تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,332 |
تعداد دریافت فایل اصل مقاله | 15,214,178 |
پیش بینی خواص مکانیکی و رفتارکمانشی اتصالات نانولولههای کربنی تکجداره/نانوصفحات گرافنی با استفاده از روش المان محدود | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 30، دوره 49، شماره 3، آبان 1398، صفحه 269-278 اصل مقاله (3.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
حوا قربانی کهن فلاح1؛ رضا انصاری خلخالی* 2؛ ابوالفضل درویزه3؛ سعید روحی گرکرودی4 | ||
1دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، موسسه آموزش عالی احرار، رشت، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
3استاد، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
4استادیار، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، لنگرود، ایران | ||
چکیده | ||
در این مقاله مدل المان محدود اتمی برای مطالعه رفتار کمانشی و خواص مکانیکی نانولولههای کربنی تکجداره متصل به نانوصفحات گرافنی با شرایط تکیهگاهی مختلف بهکار گرفته شده است. با در نظر گرفتن نانولولهها به صورت سازه قاب فضایی، روشهای مکانیک سازهای کلاسیک میتواند برای مطالعه رفتارهای مکانیکی آنها مورد استفاده قرار گیرد. برای مدل کردن پیوندها و اتمها به ترتیب از المانهای تیر و جرم استفاده میشود. به منظور تعیین خواص این المانهای تیر از برابری مکانیک مولکولی و مکانیک سازهای استفاده میشود. تحلیل حاضر اطلاعات سودمندی را در مورد قابلیت استفاده از مدل المان محدود در پیشبینی مدول الاستیسیته و نیروی کمانشی بحرانی اتصالات نانولولههای کربنی ارائه میکند. نتایج نشان میدهد که در نسبت منظری مشخص (نسبت طول به شعاع نانولوله)، با افزایش طول نانولوله، نیروی کمانش بحرانی کاهش مییابد. در حالی که مدول الاستیسیته ثابت است. به علاوه، با افزایش نسبت منظری، نیروی کمانش بحرانی کاهش و مدول الاستیسیته افزایش کمی مییابد. مقدار نیروی کمانش بحرانی برای نانولوله تحت شرط مرزی گیردار-گیردار بیشتر از سایر شرایط مرزی است. در نهایت، ده شکل مود اول نانولولههای صندلی و زیگزاگ در حالت یکطرفه و دوطرفه ترسیم شده و نشان داده میشود که شکل مودهای نانولولههای صندلی و زیگزاگ تقریبا مشابه هستند. | ||
کلیدواژهها | ||
مدلسازی المان محدود؛ اتصالات نانولولههای کربنی تکجداره؛ نیروی کمانش بحرانی؛ مدول الاستیسیته | ||
مراجع | ||
[1] Iijima S., Brabec C., Maiti A., and Bernholc J., Structural flexibility of carbon nanotubes, Journal of Chemical Physics, Vol. 104, No. 5, pp. 2089-2092, 1996. [2] Gibson R. F., Adorned E. O., Wen Y. F., Vibrations of carbon nanotubes and their composites, A review Composites Science and Technology, Vol. 67, pp. 1-28, 2007. [3] Dresselhaus M. S., Dresselhaus G., Jorio A., Unusual properties and structure of carbon nanotubes, Annual Review of Materials Research, Vol. 34, No. 1, pp. 247-278, 2004. [4] Saito K., Nakamura J., Natori A., Ballistic thermal conductance of a graphene sheet, Physical Review B, Vol. 76, No. 11, pp. 115409, 2007. [5] J. Robertson, Realistic, application of CNTs, Mater Today, Vol. 7, No. 10, pp. 46-52, 2004. [6] Li X., Bhushan B., A review of nano indentation continuous stiffness measurement technique and its applications, Materials Characterization, Vol. 48, No. 1, pp. 11-36, 2002. [7] Li X., Bhushan B., Micro/nano mechanical and tribological characterization of ultrathin amorphous carbon coatings, Journal of Materials Research, Vol. 14, No. 6, pp. 2328-2337, 1999. [8] Li X., Gao H., Murphy C. J., Caswell K. K., Nanoindentation of Silver Nanowires, Nano Letters, Vol. 3, No. 11, pp. 1495-1498, 2003. [9] Li X., Chang W. C., Chao Y. J., Wang R., Chang M., Nanoscale structural and mechanical characterization of a natural nanocomposite material, the shell of red abalone, Nano Letters, Vol. 4, No. 4, pp. 613-617, 2004. [10] Yakobson B. I., Campbell M. P., Brabec C. J., Bernholc J., High strain rate fracture and C-chain unraveling in carbon nanotubes, Computational Materials Science, Vol. 8, No. 4, pp. 341-348, 1997. [11] Hernandez E., Goze C., Bernier P., Rubio A., Elastic properties of C and BxCyNz composite nanotubes, Physical Review Letters, Vol. 80, No. 20, pp. 4502-4505, 1998. [12] S´anchez-Portal D., Artacho E., Soler J. M, Rubio A., Ordej´on P., Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Physical Review B, Vol. 59, No. 19, pp. 12678-12688, 1999. [13] Odegard G. M., Gates T. S., Nicholson L. M., Wise K. E., Equivalent-continuum modeling of nano-structured materials, Composites Science and Technology, Vol. 62, No. 14, pp. 1869-1880, 2002. [14] Li C., Chou T. W., A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures, Vol. 40, No. 10, pp. 2487-2499, 2003. [15] Qian D., Wagner G. J., Liu W. K., Yu M. F., Ruoff R. S., Mechanics of carbon nanotubes, Applied Mechanics Reviews, Vol. 55, No. 6, pp. 495-533, 2002. [16] Wang C. M., Tan V. B. C., Zhang Y. Y., Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, Journal of Sound and Vibration, Vol. 294, No. 4, pp. 1060-1072, 2006. [17] Hsu J. C., Chang R. P., Chang W. J., Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory, Physics Letters A, Vol. 372, No. 16, pp. 2757-2759, 2008. [18] Zhang Y. Y., Wang C. M., Tan V. B. C., Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics, Advances in Applied Mathematics and Mechanics, Vol. 1, No. 1, pp. 89-106, 2009. [19] Yakobson B. I., Brabec C. J., Bernholc J., Nanomechanics of carbon tubes, instabilities beyond linear response, Physical Review Letters, Vol. 76, No. 14, pp. 2511-2514, 1996. [20] Ru C. Q., Effective bending stiffness of carbon nanotubes, Physical Review B, Vol. 62, No. 15, pp. 9973-9976, 2000. [21] Ru C. Q., Elastic compressive of single-walled carbon nanotube ropes under high pressure, Physical Review B, Vol. 62, No. 15, pp. 10405-10408, 2000. [22] Ansari R., Rouhi S., Atomistic finite element model for axial compressive of single-walled carbon nanotubes, Physica E, Low-Dimensional Systems and Nanostructures, Vol. 43, No. 1, pp. 58-69, 2010. [23] Rouhi S., Ansari R., Atomistic finite element model for axial compressive and vibration analysis of single-layered graphene sheets, Physica E, Vol. 44, No. 4, pp. 764-772, 2012. [24] Rappe A. K., Casewit C. J., Colwell K. S., Goddard Iii W. A., Skiff W. M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society, Vol. 114, No. 25, pp. 10024-10035, 1992. [25] Wesolowski R. P., Terzyk A. P., Pillared graphene as a gas separation membrane, Physical Chemistry Chemical Physics,Vol. 13, pp. 17027-17029, 2011. [26] Bae S. H., Karthikeyan K., Lee Y. S., Oh I. K., Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity a node material in lithium ion battery, CarbonVol. 64, PP. 527-536, 2013. [27] Kang C., Baskaran R., Hwang J., Ku B. C., Choi W., Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery, Carbon Vol. 68, PP. 493-500, 2014. [28] Dimitrakakis G. K., Tylianakis E., Froudakis G. E., Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage, Nano letters, Vol. 8, pp. 3166-3170, 2008 [29] Varshney V., Patnaik S., Roy A. K., Froudakis G., Farmer B. L., Modeling of thermal transport in pillared-graphene architectures, ACS nano Vol. 4, PP. 1153-1161, 2010. [30] Xu L., Wei N., Zheng Y., Fan Z., Wang H. Q., Zheng J. C., Graphene-nanotube 3D networks: intriguing thermal and mechanical properties, Journal of Materials Chemistry, Vol. 22, PP. 1435-1444, 2012. [31] Du F., Yu D., Dai L., Ganguli S., Varshney V., Roy A. K., Preparation of tunable 3D pillared carbon nanotube–graphene networks for high-performance capacitance, Chemistry of Materials, Vol. 23, PP. 4810-4816, 2011. [32] Kim Y. S., Kumar K., Fisher F. T., Yang E. H., Out-of-plane growth of CNTs on graphene for super capacitor applications, Nanotechnology, Vol. 23, PP. 015301, 2011. [33] Nguyen D. D., Tai N. H., Chen S. Y., Chueh Y. L., Controlled growth of carbon nanotube–graphene hybrid materials for flexible and transparent conductors and electron field emitters, Nanoscale, Vol. 4, PP. 632-638, 2012. [34] Yu F., Zhou H., Zhang Z., Wang G., Yang H., Chen M., Tao L., Tang D., He J., Sun L., Controlled Fabrication of Intermolecular Junctions of Single-Walled Carbon Nanotube/Graphene Nanoribbon, Small, Vol. 9, PP. 2405-2409, 2013. [35] Wen J., Li Y., Yang W., Facile fabrication of three-dimensional graphene/carbon nanotube sandwich structures, Vacuum, Vol. 101, PP. 271-274, 2014. [36] Tang C., Zhang Q., Zhao M. Q., Huang J. Q., Cheng X. B., Tian G. L., Peng H. J., Wei F., Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bi functional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries, Advanced Materials, Vol. 26, PP. 6100-6105, 2014. [37] Wu J., Yu K., Jia K. Q. Y., One Step Fabrication of Multi-walled Carbon Nanotubes/Graphene Nano platelets Hybrid Materials with Excellent Mechanical Property, Fibers and Polymers, Vol. 16, PP. 1540-1546, 2015. [38] Ansari R., Rouhi S., Atomistic finite element model for axial compressive of single-walled carbon nanotubes, Physica E, Condensed Matter, Vol. 43, PP. 58-69, 2010. [39] Shahnazari A., Ansari R., Rouhi S., On the stability characteristics of zigzag phosphorene nanotubes: A finite element investigation, Journal of Alloys and Compounds, Vol. 702, 388-398, 2017. [40] Wen Xing B., Chang Chun Z., Wan Zhao C., Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics, Physica B, Condensed Matter, Vol. 352, No. 1-4, PP. 156-163, 2004. | ||
آمار تعداد مشاهده مقاله: 252 تعداد دریافت فایل اصل مقاله: 329 |