![سامانه مدیریت نشریات علمی دانشگاه تبریز](./data/logo.png)
تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,953,819 |
تعداد دریافت فایل اصل مقاله | 15,624,497 |
بررسی تأثیر نوع و قطر حلزونی بر بازده پمپ معکوس سانتریفیوژ در شرایط عملکردی مختلف | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 26، دوره 49، شماره 3، آبان 1398، صفحه 229-238 اصل مقاله (3.18 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مجتبی طحانی* 1؛ سلمان صارمیان2؛ حسین یوسفی1؛ روشنک فهیمی3؛ یونس نوراللهی1 | ||
1دانشیار، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران | ||
2دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3دانشجوی دکتری، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
در توربینهای شعاعی معمولاً دو نوع حلزونی شعاعی و مماسی برحسب کاربردهایشان مورد استفاده قرار میگیرند. استفاده از نوع شعاعی یا مماسی در کاربرد پمپ به عنوان توربین با توجه به نواحی کارکرد آنها از اهمیت بالایی برخوردار است. در این مقاله تأثیر نوع حلزونی و کاهش قطر آن به عنوان یکی از پارامترهای مؤثر در حالت توربینی بررسی شده است. در این راستا PAT توسط نرمافزار CFTurbo طراحی و در نرمافزار ANSYS Meshing فرایند شبکهبندی آن انجام شده و توسط نرمافزار CFX با رویکرد حجم محدود و با مدل توربولانسیk-ω SST تحلیل شده و نتایج حاصل از شبیهسازی عددی با نتایج تجربی مقایسه و اعتبارسنجی گردید. بررسی تأثیر نوع حلزونی در کارکرد توربینی بر پارامترهای هیدرولیکی و بازده نشان داد، زمانی که فراوانی دبی در پایین نقطه عملکردی بیشتر است (Q<QBEP)، بازده حلزونی شعاعی 715/0 درصد بالاتر از حلزونی مماسی و زمانی که فراوانی در نقاط بالاتر از نقطه عملکردی بیشتر است (Q>QBEP)، استفاده از حلزونی مماسی موجب افزایش 03/1 درصدی بازده نسبت به حلزونی شعاعی میشود. نتایج کاهش قطر حلزونی حاکی از افزایش 05/4 درصدی بازده در نقطه عملکردی بود، البته در نقاط پایینتر از نقطه عملکردی (Q<QBEP) تأثیر بیشتری نسبت به نقاط بالای آن دارد. | ||
کلیدواژهها | ||
فشارشکن؛ افزایش بازده؛ کاهش قطر حلزونی؛ پمپ سانتریفیوژ؛ مدلسازی عددی | ||
مراجع | ||
[1] Ramos H. and Borga A., Pump as Turbine: an Unconventional Solution to Energy Production. Urban Water, Vol 1, pp. 261–263, 1999. [2] Chapallaz J. M., Eichenberger P. and Fischer G., Manual on Pumps used as Turbines. Vieweg, Braunschweig, Germany, 1992. [3] Singh P., Optimization of the Internal Hydraulic and of System Design in Pumps as Turbines with Field Implementation and Evaluation. Ph.D. thesis, University of Karlsruhe, Karlsruhe, June 2005. [4] Derakhshan S. and Nourbakhsh A., Theoretical, Numerical and Experimental Investigation of Centrifugal Pumps in Reverse Operation. Experimental Thermal and Fluid Science, Vol 32, pp. 1620-1627, 2008. [5] Derakhshan S., Nourbakhsh A. and Mohammadi B., Efficiency Improvement of Centrifugal Reverse Pumps. Journal of Fluids Engineering, Vol 131, pp. 1620-1627, 2009. [6] Singh P. and Nestmann F., Experimental Optimization of a Free Vortex Propeller Runner for Microhydro Application. Experimental Thermal and Fluid Science, Vol 33, pp. 991–1002, 2009. [7] Yang S., Kong F. and Chen B., Research on Pump Volute Design Method Using CFD. International Journal of Rotating Machinery, Vol 124, 2011. [8] Nautiyal H., Varun, Kumar A. and Yadav S., Experimental Investigation of Centrifugal Pump Working as Turbine for Small Hydropower Systems. Energy Science and Technology, Vol 1, Issue 1, pp. 79-86, 2011. [9] Fecarotta O., Carravetta A. and Ramos H. M., CFD and Comparisons for a Pump as Turbine Mesh Reliability and Performance Concerns. International Journal of Energy and Environment, Vol 2, pp.39-48, 2011. [10] Yang S. S., Kong F. Y. and Derakhshan S., Theoretical, Numerical and Experimental Prediction of Pump as Turbine Performance. Renewable Energy, Vol 48, pp. 507-513, 2012. [11] Bozorgi A., Javidpour E., Riasi A. and Nourbakhsh A., Numerical and Experimental Study of Using Axial Pump as Turbine in Pico Hydropower Plants. Renewable Energy, Vol 53, pp. 258-264, 2013. [12] Dribssa E., Nigussie T. and Tsegaye B., Performance Analysis of Centrifugal Pump Operating as Turbine for Identified Micro/Pico Hydro Site of Ethiopia. International Journal of Engineering Research and General Science, Vol 3, Issue 3, pp. 6-19, 2015. [13] Alemi H., Nourbakhsh A., Raisee M. and Najafi F., Effects of Volute Curvature on Performance of a Low Specific-Speed Centrifugal Pump at Design and Off-Design Conditions. Journal of Turbomachinery, Vol 137, 2015. [14] Guang Li W., Effects of Viscosity on Turbine Mode Performance and Flow of a Low Specific Speed Centrifugal Pump. Applied Mathematical Modelling, Vol 40, pp. 904-926, 2016. [15] Barbarelli S., Amelio M. and Florio G., Predictive Model Estimating the Performances of Centrifugal Pump used as Turbines. Energy, Volume 103, pp. 103-121, 2016. [16] Huang S., Qiu G., Su X., Chen J. and Zou W., Performance Prediction of a Centrifugal Pump as Turbine using Rotor-Volute Matching Principle. Renewable Energy, Vol 108, pp. 64-71, 2017. [17] Li J. W., Zhang Y. N., Liu K. H., Xian H. Z., Yu J. X., Numerical simulation of hydraulic force on the impeller of reversible pump turbines in generating mode. Science Direct journal of hydrodynamics, Vol 29, pp. 603-609, 2017. [18] Tahani M. and Saremian S., Investigation effect of changes geometry of impeller on turbine mode performance of the centrifugal pump at the governing condition of the urban water distribution network, Modares Mechanical Engineering, Vol. 18, No. 01, pp. 11-19, 2018. (in Persian) [19] Menter F. R., Two-equation eddy-viscosity turbulence models for engineering applications”. AIAA Journal, Vol 32, pp. 1598–1605, 1994. [20] Help Navigator, ANSYS CFX, Release 17.2 CFX-Solver modeling Guide. [21] Wilcox D. C., Reassessment of the Scale-Determining Equation for Advanced Turbulence Models". AIAA Journal, Vol 26, pp. 1299-1310, 1988. [22] Shojaeefard M. H., Tahani M., Ehghaghi M .B., Beglari M. and Fallahian M. A., Numerical Sudy of the Effects of some Geometric Characteristics of a Centrifugal Pump Impeller that Pumps a Viscous Fluid. Computers & Fluids, Vol 60, pp. 61–70, 2012. [23] Guo P., Luo X., Liao W. and Zhu G., Numerical investigation on impeller-volute interaction in a low specific speed centrifugal pump with tongue profile variation. Proceedings of ASME Fluids Engineering Conference, Florida USA, 2008. [24] شجاعیفرد م.ح. و طحانی م.، بررسی عددی و تجربی اثر هندسه چرخ متحرک بر عملکرد پمپ گریز از مرکز هنگام پمپاژ روغن. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 42، ش. 1، ص 33-43، 1391. [25] احقاقی م.ب.، وجدی م. و نمازی زاده م.، عملکرد پمپ گریز از مرکز به عنوان توربین و تأثیر پرههای جداکننده. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 47، ش. 3، ص 11-20، 1396. [26] احقاقی م.ب.، شروانی تبار م.ت.، وجدی م. و نمازی زاده م.، بررسی عددی بهبود عملکرد پمپ گریز روغن با پرههای جدا کننده. مجلۀ مهندسی مکانیک دانشگاه تبریز، د. 46، ش. 4، ص 9-18، 1396. [27] Sanaye S. and Tahani M., Analysis of gas turbine operating parameters with inlet fogging and wet compression processes. Applied Thermal Engineering, Vol 30, pp. 234–244, 2010. [28] Moffat RJ. Contributions to the theory of single-sample uncertainty analysis. ASME Journal of Fluids and Engineering, Vol 104, pp. 250-260, 1982. | ||
آمار تعداد مشاهده مقاله: 1,297 تعداد دریافت فایل اصل مقاله: 1,231 |