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Abstract During the past years, a wide range of distinct approaches has been exerted to solve
the nonlinear fractional differential equations (NLFDEs). In this paper, the invari-

ant subspace method (ISM) in conjunction with the fractional Sumudu’s transform
(FST) in the conformable context is formally adopted to deal with a nonlinear con-
formable time-fractional dispersive equation of the fifth-order. As an outcome, a new
exact solution of the model is procured, corroborating the exceptional performance

of the hybrid scheme.
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1. Introduction

The investigation of exact solutions is one of the hottest topics in mathemati-
cal physics; since a lot of information is provided using the exact solutions. In the
last years, several various schemes [5, 10–12, 19–21, 25, 26, 28, 33, 39, 41, 45] have
been used to solve the nonlinear fractional differential equations. Recently, a sys-
tematic approach called the invariant subspace method [16–18, 34, 35, 38, 40, 44]
has received significant attention among academic scholars. For instance, Sahadevan
and Prakash [40] utilized the ISM to extract the exact solutions of time-fractional
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Hunter−Saxton equation, time-fractional coupled nonlinear diffusion system, time-
fractional coupled Boussinesq equation, and time-fractional Whitman−Broer−Kaup
system in the Caputo sense and Hashemi [18] adopted the ISM along with the con-
formable fractional Laplace transform to retrieve the exact solutions of time-fractional
thin-film, Hunter−Saxton and dispersive equations in the conformable sense. For fur-
ther information check references [2–4, 6–8, 22–24, 31, 42].

The Sumudu’s transform is another famous method that was first established by
Watugala [43] to deal with the problems in engineering. The Sumudu’s transform of
a function like f(t) is given by [43]

G(u) = S[f(t);u] =

∫ ∞

0

e−tf(ut)dt,

provided that the integral exists for some u. The Sumudu’s transform consists of
many interesting properties which have been pointed out by Watugala in [43]. Due to
the super importance of the integral transforms [9, 14, 27, 30, 32], the current paper
aims to utilize the ISM in conjunction with the FST in the conformable context
for handling a nonlinear conformable time-fractional dispersive equation of the fifth-
order. The conformable fractional calculus and some of its features will be reviewed
below.

Definition 1.1. For a function like f(t) defined for t ≥ 0, the αth order of the
conformable fractional derivative is given as [29]

tTα(f(t)) =
dαf(t)

dtα
= lim

τ→0

f(t+ τt1−α)− f(t)

τ
, α ∈ (0, 1], t > 0,

and tTα(f(0)) = lim
t→0+

tTα(f(t)).

Definition 1.2. For f : [a,∞[−→ R, a ≥ 0, the conformable fractional integral of f
is expressed by [29]

Iaα(f(t)) =

∫ t

a

f(x)

x1−α
dx,

in which α ∈ (0, 1].
The conformable fractional derivative provides a series of interesting features which

have been presented in [1, 15, 29].

Theorem 1.3. If f(t) and g(t) are α-differentiable for t > 0 when α ∈ (0, 1], then

i. tTα(af(t) + bg(t)) = atTα(f(t)) + btTα(g(t)), ∀a, b ∈ R.
ii. tTα(t

β) = βtβ−α, ∀β ∈ R.
iii. tTα(f(t)g(t)) = g(t)tTα(f(t)) + f(t)tTα(g(t)).

iv. tTα(
f(t)

g(t)
) =

g(t)tTα(f(t))− f(t)tTα(g(t))

g(t)2
.

v. tTα(f(t)) = t1−α df(t)

dt
.

Theorem 1.4. If f(t) and g(t) are differentiable and f(t) is also α-differentiable,
then

tTα(fog(t)) = t1−αg′(t)f ′(g(t)).
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The outline of the present article is as follows: In the second section, the ISM is
described in detail. In the third section, the FST in the conformable context and
its features are introduced. In the fourth section, the ISM along with the FST in
the conformable context is exerted to solve a nonlinear conformable time-fractional
dispersive equation of the fifth-order. Ultimately, the last section summarizes the
results of the current work.

2. Invariant subspace method

Suppose that a nonlinear conformable time-fractional PDE can be written as

∂αu(x, t)

∂tα
= Ξ(u(x, t)), α ∈ (0, 1], (2.1)

in which Ξ is a nonlinear differential operator with respect to the variable x.

Definition 2.1. The finite-dimensional linear space

Wn = span{w1(x), w2(x), · · · , wn(x)}
is an invariant subspace with respect to (2.1), if Ξ(Wn) ⊆Wn.

Theorem 2.2. IfWn = span{w1(x), w2(x), · · · , wn(x)} is an invariant subspace with
respect to (2.1), then, there exist the functions ψ1, ψ2, · · · , ψn such that

Ξ
[ n∑

i=1

λiwi(x)
]
=

n∑
i=1

ψi(λ1, λ2, · · · , λn)wi(x), λi ∈ R, i = 1, · · · , n.

Furthermore

u(x, t) =
n∑

i=1

λi(t)wi(x),

is the solution of Eq. (2.1), if the coefficients λi(t) gratify the following system of
conformable FDEs

tTα(λi(t)) = ψi(λ1(t), λ2(t), · · · , λn(t)), i = 1, · · · , n.

Proof. See [18]. �

3. Fractional Sumudu’s transform in the conformable context and its
features

In this section, the FST in the conformable context and its features are introduced.
For this purpose, let’s first define the FST in the conformable context.

Definition 3.1. For a function like f(t) : [0,∞[→ R, the αth order of the FST in
the conformable context is given as

Sα[f(t);u] =

∫ ∞

0

e−
1
α tαf(ut)dαt =

∫ ∞

0

e−
1
α tαf(ut)tα−1dt,

when it is finite.

The conformable fractional Sumudu’s transform (CFST) of some elementary func-
tions has been given below.
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i. Sα

[
sin(

a

α
tα);u

]
=

auα

1 + (auα)2
.

ii. Sα

[
cos(

a

α
tα);u

]
=

1

1 + (auα)2
.

Proof. (i):

Sα

[
sin(

a

α
tα);u

]
=

∫ ∞

0

e−
1
α tα sin(

a

α
(ut)α)tα−1dt

(
x =

1

α
tα
)

=

∫ ∞

0

e−x sin(auαx)dx

= S
[
sin(at);uα

]
=

auα

1 + (auα)2
,

which completes the proof.
(ii):

Sα

[
cos(

a

α
tα);u

]
=

∫ ∞

0

e−
1
αtα cos(

a

α
(ut)

α
)tα−1dt (x =

1

α
tα)

=

∫ ∞

0

e−x cos(auαx)dx

= S
[
cos(at);uα

]
=

1

1 + (auα)
2 ,

which completes the proof. �

Theorem 3.2. Let Sα[f(t);u] and Sα[g(t);u] exist. Then

Sα[(c1f + c2g)(t);u] = c1Sα[f(t);u] + c2Sα[g(t);u].

Proof.

Sα [(c1f + c2g)(t);u] =

∫ ∞

0

e−
1
αtα (c1f + c2g) (ut) t

α−1dt

= c1

∫ ∞

0

e−
1
αtαf (ut)tα−1dt

+ c2

∫ ∞

0

e−
1
αtαg (ut)tα−1dt

= c1Sα [f(t);u] + c2Sα [g(t);u] ,

which completes the proof. It is clear that the CFST is a linear operator. �

Theorem 3.3. Let f(t) : [0,∞[−→ R be α-differentiable and Sα[tTα(f(t));u] exists.
Then

Sα [tTα (f(t)) ;u] =
Sα [f(t);u]

uα
− f(0)

uα
.
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Proof.

Sα [tTα (f(t)) ;u] =

∫ ∞

0

e−
1
αtα

tTα (f(ut)) tα−1dt

= u1−α

∫ ∞

0

e−
1
αtαf ′(ut)dt integration by parts

= u−α

[∫ ∞

0

e−
1
αtαf(ut)tα−1dt− f(0)

]
=
Sα [f(t);u]− f(0)

uα
.

�

If f(t) is n times α-differentiable and Sα

[
tT

(n)
α (f(t)) ;u

]
exists, then it can be

readily demonstrated that

Sα

[
tT

(n)
α (f(t)) ;u

]
=
Sα [f(t);u]− f (0)

unα
− tTα (f(0))

u(n−1)α
−· · ·− tT

(n−1)
α (f(0))

uα
.

4. Nonlinear conformable time-fractional dispersive equation and its
new exact solution

Consider the following nonlinear conformable time-fractional dispersive equation
of the fifth-order [17, 18]

∂αu(x, t)

∂tα
= λ

∂5u2(x, t)

∂x5
+ µ

∂3u2(x, t)

∂x3
+ η

∂u2(x, t)

∂x
, α ∈ (0, 1]. (4.1)

As shown in [17, 18], the invariant subspace for the Eq. (4.1) is

W3 = span {1, cos (x) , sin (x)} ,

if 16λ− 4µ+ η = 0. To review this assertion, suppose that

E = λ1 + λ2 cos (x) + λ3 sin (x) ,

and so

Ξ (E) = 4 (16λ− 4µ+ η)λ2λ3 cos
2 (x)

+ ((−2 (16λ− 4µ+ η)λ22 + 2 (16λ− 4µ+ η)λ23) sin (x)

+ 2 (λ− µ+ η)λ1λ3) cos (x)

− 2 (λ− µ+ η)λ1λ2 sin (x)− 2 (16λ− 4µ+ η)λ2λ3.

Now, by considering 16λ− 4µ+ η = 0, we find

Ξ (E) = 2 (λ− µ+ η)λ1λ3 cos (x)− 2 (λ− µ+ η)λ1λ2 sin (x) ,

which recommends the solution of Eq. (4.1) can be written as

u (x, t) = λ1(t) + λ2(t) cos (x) + λ3(t) sin (x) . (4.2)
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By inserting (4.2) in (4.1) and through some operations, we find

tTα (λ1(t)) = 0,

tTα (λ2(t)) = γλ1(t)λ3(t),

tTα (λ3(t)) = −γλ1(t)λ2(t),

in which γ = 2(λ− µ+ η). Solving the equation tTα (λ1(t)) = 0 results in λ1(t) = d0
and thus

tTα (λ2(t)) = γd0λ3(t),

tTα (λ3(t)) = −γd0λ2(t). (4.3)

By differentiating the first equation, we acquire

tTα(tTα (λ2(t))) = γd0tTα(λ3(t)).

Now, it is obvious that above equation can be presented as

tTα(tTα (λ2(t))) = −γ2d20λ2(t).
Using the CFST, yields

Sα

[
tTα (tTα(λ2(t))) ;u

]
= −γ2d20Sα [λ2(t);u] ,

and therefore

Sα [tTα (λ2(t)) ;u]

uα
− tTα (λ2(0))

uα
= −γ2d20Sα [λ2(t);u] ,

where tTα (λ2(0)) = γd0d2 (λ3(0) = d2). In a similar manner, the equation

Sα [tTα (λ2(t)) ;u]

uα
=
γd0d2
uα

− γ2d20Sα [λ2(t);u] ,

can be written as

Sα [λ2(t);u]− λ2 (0)︸ ︷︷ ︸
d1

u2α
=
γd0d2
uα

− γ2d20Sα [λ2(t);u] .

It is clear that

Sα [λ2(t);u] =
γd0d2u

α

1 + (γd0uα)
2 +

d1

1 + (γd0uα)
2 .

Now, by means of the inverse CFST, we retrieve

λ2 (t) = d1 cos

(
γd0

tα

α

)
+ d2 sin

(
γd0

tα

α

)
. (4.4)

Setting (4.4) in (4.3) leads to

tTα (λ3(t)) = −γd0
(
d1 cos

(
γd0

tα

α

)
+ d2 sin

(
γd0

tα

α

))
.

Using the CFST, results in

Sα [tTα (λ3(t)) ;u] = −γd0Sα

[
d1 cos

(
γd0

tα

α

)
+ d2 sin

(
γd0

tα

α

)
;u

]
,
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and consequently

Sα [λ3(t);u]− λ3(0)︸ ︷︷ ︸
d2

uα
= − γd0d1

1 + (γd0uα)
2 − γ2d20d2u

α

1 + (γd0uα)
2 .

It is obvious that

Sα [λ3(t);u] = − γd0d1u
α

1 + (γd0uα)
2 +

d2

1 + (γd0uα)
2 .

Now, by means of the inverse CFST, we gain

λ3 (t) = −d1 sin
(
γd0

tα

α

)
+ d2 cos

(
γd0

tα

α

)
.

Hence, the following exact solution to the nonlinear conformable time-fractional dis-
persive equation of the fifth-order is acquired

u (x, t) = d0 +

(
d1 cos

(
γd0

tα

α

)
+ d2 sin

(
γd0

tα

α

))
cos (x)

+

(
−d1 sin

(
γd0

tα

α

)
+ d2 cos

(
γd0

tα

α

))
sin (x) ,

which is the corrected form of the solution reported in [18].
The new exact solution derived through the present hybrid scheme has been plotted

for different values of α in the Figure 1.

Figure 1. The new exact solution derived through the present hy-
brid scheme for different values of α when λ = 1, µ = 2, η = −8 and
d0 = d1 = d2 = 1.
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Note: Although there is another kind of exact solutions to a wide range of (2+ 1)-
dimensional differential equations called the lump solutions [13, 36, 37], it should be
mentioned that extracting such solutions to (2+1)-dimensional fractional differential
equations through the presented method is not applicable.

5. Conclusion

A nonlinear time-fractional dispersive equation of the fifth-order with the con-
formable derivative was analytically solved in the current work. The invariant sub-
space method along with the fractional Sumudu’s transform in the conformable con-
text has been applied for the first time successfully to handle the intended aim. The
present study reveals that the current hybrid method provides a new and effective
systematic technique to deal with the conformable time-fractional differential equa-
tions in mathematical physics. It is worth noting that the validity of the reported
result was checked by substituting it into the Eq. (4.1).
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