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Dynamics of a predator-prey system with prey refuge
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Abstract In this paper, we investigate the dynamical complexities of a prey predator model

prey refuge providing additional food to predator. We determine dynamical behav-
iors of the equilibria of this system and characterize codimension 1 and codimension
2 bifurcations of the system analytically. Hopf bifurcation conditions are derived an-
alytically. We especially approximate a family of limit cycles emanating from a Hopf

point. The analytical results are in well agreement with the numerical simulation
results. Our bifurcation analysis indicates that the system exhibits numerous types
of bifurcation phenomena, including Hopf, and Bogdanov-Takens bifurcations.
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1. Introduction

The fundamental goals of theoretical ecology are to understand the interactions
among individual organisms and interactions with the environment to determine the
distribution of populations and the structure of communities [4]. Mathematical mod-
elling in ecology has received great attention since the pioneer work of Lotka [19] and
Volterra [31]. The first Mathematical model for prey-predator was developed inde-
pendently by Aefred James Lotka [19] and Vito Volterra [31]. Motivated by the work
of Lotka [19] and Volterra [31] many food chain models are formulated and analyzed
[10, 24, 36]. The dynamic predation behavior of a predator in an ecological system
depends strongly on functional response. The most common functional response in
a prey-predator system is the famous Holling type-II and modified of Holling type-II
response. It is important to note that predators functional response approaches to a
constant value as the prey population increases. Prey refugia are areas occupied by
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prey which potentially minimize their rate of encounter with predators [29]. For an
example, in a wolf-ungulate system, ungulates may seek refuge by migrating to areas
outside the core territories of wolves (migration) or survive longer outside the wolves
a core use areas (mortality)[23]. Prey refuge has many potential impacts on prey-
predator dynamics, including promoting stability, creating dynamic fluctuations or
producing instability in an ecosystem [17, 26, 27]. The presence of refuge in attacking
rate of predator may cause the extinction of predator in prey-predator system. The
prey-predator interaction often exhibits spatial refugee which afford the prey some
degree of protection from predation and reduces the chance of extinction due to pre-
dation. Therefore, the existence of prey refuges can have important effects on the
coexistence of prey and predator population. According to Taylor [29], refuges are
of three following types: (a) provide permanent spatial protection for a small subset
of the prey population, (b) provide temporary spatial protection, and (c) provide a
temporal refuge in numbers by decrease the risk of predation by increasing the abun-
dance of vulnerable prey. Understanding the effects of prey refuge, we introduce a
refuge parameter c′ into the attacking rate as c(1 − c′). Incorporating the term of
prey refuge, the functional response becomes c′ ∈ [0, 1]. Incorporating the term of

prey refuge, the functional response is f(N) = c(1−c′)e1N
a+h1e1N

, where N is total num-
ber of prey individuals. The term c represents the attack rate of predator on prey
and the parameter a represents the half saturation constant. Now, if h1 and e1 are
two constants representing handling time of the predator per prey item and ability
of the predator to detect the prey respectively. The additional food can reduce the
predation pressure on prey population. This additional food is an important com-
ponent of most predators diet, although they receive less attention than basal prey.
In scientific literature, these foods are fundamentally shape the life histories of many
predator species. The role of alternative prey (additional food) in sustaining preda-
tor populations has been reported in laboratory studies and as well as in theoretical
studies [12, 13, 30]. [28] reported the dynamics of prey-predator system in presence
of additional food for predator and discussed the effect of quality and quantity of
additional food. The functional response in presence of additional food for predator

takes the form f(N) = c(1−c′)e1N
a+h2e2A+h1e1N

where h2 be the handling time of additional

food biomass (A) and e2 represents the ability to detect the additional food. We now
propose a prey-predator model with logistic growth rate and prey refuge in presence
of additional food for predator. The model takes the following form:

dN

dT
= rN(1− N

K
)− c(1− c′)e1NP

a+ h2e2A+ h1e1N
,

dP

dT
=
b[(1− c′)e1N + e2A]P

a+ h2e2A+ h1e1N
−mP,

(1.1)

where N,P denote the biomass of prey and predator respectively. The initial popula-
tion level is taken as N(0) ≥ 0, P (0) ≥ 0. The parameters r,K respectively represent
the intrinsic growth rate and environmental carrying capacity of the prey. Parameter
b denotes the conversion efficiency of prey into predator and m represents death rate
of predator. Defining c1 = c

h1
, α = h2

h1
, η = e2

e1
, b1 = b

h1
, a1

a
e1h1

, system (1.1) can be
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written as:
dN

dt
= rN(1− N

K
)− c1(1− c′)NP

a1 + αηA
+N,

dP

dt
=
b1[(1− c′)N + ηA]P

a1 + αηA+N
−mP,

(1.2)

To reduce the number of parameters, we non-dimensionalized the system (1.2) using
following transformations x = N

a1
, y = c1P

ra1
, t = rT . Then system (1.2) reduces to the

following form:
dx

dt
= x(1− x

γ
)− (1− c′)xy

1 + αξ + x
,

dy

dt
=
β[(1− c′)x+ ξ]y

1 + αξ + x
− δy,

(1.3)

where, γ = K
a1
, α = h2

h1
, ξ = ηA

a1
, β = b1

r , δ = m
r . The terms α and ξ are the pa-

rameters which respectively characterize as quality and quantity of additional food.
The term α = h2

h1
is directly proportional to the handling time of the additional

food and is known as quality of the additional food. The relation ξ = ηA
a1

represents

that ξ is directly proportional to the biomass of additional food (A) and thus ξ is a
representative of quantity of additional food which is supplied to predator [28]. In
particular, the model (1.3) reduces to the model of Srinivasu et al. [28] in absence
of prey refuge c′ = 0. This system first was studied in [32], in which some local
bifurcations were studied analytically. The proposed models usually depend on some
parameters and are studied by bifurcation method. The objective is to maximize the
monetary social benefit as well as conservation of the ecosystem. More and more
complex bifurcation phenomena are discovered and studied in predator-prey models,
see, for example, Hopf bifurcations of codimension 1 in [15, 16, 34], cusp bifurcation
of codimension 2 in [14, 25, 34, 35], Bogdanov-Takens bifurcation of codimension 3
(cusp case) in [17, 40], Bogdanov-Takens bifurcation of codimension 3 (focus case)
in [35], Bogdanov-Takens bifurcation of codimension 3 (saddle case) in [7], Hopf bi-
furcation of codimension 2 in [14, 17, 36], etc. In this work we will use the term
complexity to describe the ecological complexity found in nature as well as the of
dynamical complexity of the models. In recent years, a significant number of the pub-
lished papers on the mathematical Continuous and discrete time models of biology,
physics, engineering,... discussed the systems of differential equations and the asso-
ciated numerical methods. Mathematical models on prey predator systems create a
major interest during the last few decades. Study of such system with discrete models
and continuous models can be found in [2, 5, 8, 15, 16, 18, 33, 37, 38, 39]. The main
aim of this paper is to study the pattern of bifurcation that takes place as we vary
some of the model parameters. We specially focus on the biological implications of
the found bifurcations. Most importantly we show that the Hopf bifurcation plays,
for various reasons, a crucial role. Ecological systems are complex because of the
diversity of biological species as well as the complex nature of their interactions. We
study the existence of a supercritical Hopf bifurcation in a small neighbourhood of
E∗ and a Bogdanov-Takens bifurcation in a small neighbourhood of E∗ in system
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(1.3). In this paper, we rely heavily on advanced continuation and bifurcation tech-
niques implemented in the software package MATCONT [1, 6, 9] to obtain results
that cannot be obtained analytically. MATCONT is a dynamical toolbox based on
numerical continuation technique which is a well-understood subject [1, 3, 11]. This
software computes a solution curve of equation F (x) = 0 for the system of the form
dx
dt = f(x, α)with x ∈ Rn, f(x, α) ∈ Rn and a vector of parameters where equilibria,
limit points, limit cycles, etcetera can be computed. MATCONT is compatible with
the standard MATLAB ODE of differential equations. General descriptions, func-
tionalities and the dynamical algorithms implemented in MATCONT can be found
in [1, 6, 9]. Numerical bifurcation analysis techniques are very powerful and efficient
in physics, biology, engineering, and economics [21, 22, 33].

This paper is organized as follows: In section 2, we consider the mathematical model
and discussed some basic dynamical results and existence of equilibrium and stability
of equilibrium. In section 3, Hopf bifurcation and Bogdanov-Takens bifurcation of
the interior equilibrium point of the model system is discussed. Numerical simulation
results are included to support our analytical results in section 4. The paper concludes
with a brief discussion and we summarize our results in section 5.

2. Equilibria and basic dynamical results

The system (1.3) has trivial equilibrium point E0 = (0, 0), axial equilibrium point

E1 = (γ, 0) and co-existing equilibrium point E∗ = (x∗, y∗) where x∗ = δ+(αδ−β)ξ
β(1−c′)−δ

and y∗ = ( 1+αξ+x∗
(1−c′) )(1− x∗

γ ). The Jacobian matrix of system (1.3) at (x, y) takes the

form:

J =

(
1− 2x

γ − (1−c′)(1+αξ)y
(1+αξ+x)2 − (1−c′)x

1+αξ+x
βy[(1−c′)(1+αξ)−ξ]

(1+αξ+x)2
β[(1−c′)x+ξ]

1+αξ+x − δ

)
.

At trivial equilibrium point (0, 0), the Jacobian matrix is given by

J =

(
1 0

0 βξ
1+αξ − δ

)
.

It has always one positive eigenvalue 1 and other eigenvalue βξ
1+αξ − δ.

Lemma 2.1. The equilibrium E0 = (0, 0) of system (1.3) is always a saddle point if
βξ

1+αξ < δ, and the equilibrium E0 is unstable if βξ
1+αξ > δ.

At the axial equilibrium point (γ, 0), the Jacobian matrix is given by

J =

(
−1 − (1−c′)γ

1+αξ+γ

0 β[(1−c′)γ+ξ]
1+αξ+γ − δ

)
.

One negative eigenvalue is −1 and other eigenvalue is β[(1−c′)γ+ξ]
1+αξ+γ − δ.

Lemma 2.2. Equilibrium point Eγ = (γ, 0) is saddle for β[(1−c′)γ+ξ]
1+αξ+γ > δ and stable

for β[(1−c′)γ+ξ]
1+αξ+γ < δ.
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At the co-existing equilibrium point ( δ+(αδ−β)ξ
β(1−c′)−δ , (

1+αξ+x∗
(1−c′) )(1− x∗

γ )), the Jacobian

matrix is given by

J =

(
x∗
γ ( γ−x∗

1+αξ+x∗
− 1) − (1−c′)x∗

1+αξ+x∗
βy∗[(1−c′)(1+αξ)−ξ]

(1+αξ+x∗)2
0

)
.

Theorem 2.3. When 1 > c′ and β[(1−c′)γ+ξ]
1+αξ+γ = δ, the degenerate equilibrium point

Eγ = (γ, 0) of system (1.3) is a saddle-node.

Proof. Clearly, when β[(1−c′)γ+ξ]
1+αξ+γ = δ, at the equilibrium Eγ = (γ, 0), the Jacobian

matrix has a zero eigenvalue. We translate the equilibrium point Eγ = (γ, 0) at the
origin by means of the translation (u, v) = (x−γ, y). Then the system (1.3) becomes:

du

dt
= r(u+ γ)(1− u+ γ

γ
)− (1− c′)(u+ γ)v

1 + αξ + u+ γ
,

dv

dt
=
β[(1− c′)(u+ γ) + ξ]v

1 + αξ + u+ γ
− δv.

(2.1)

The Jacobian matrix of the system (2.1) is diagonalizable with eigenvalues λ1 = −1

and λ2 = 0 and the corresponding eigenvectors Ω1 = (1, 0)T and Ω2 = (− (1−c′γ)
1+αξ+γ , 1)

T .

Thus, with the change of coordinates:(
u
v

)
=

(
1 − (1−c′γ)

1+αξ+γ

0 1

)(
X
Y

)
.

system (2.1) reduces to:
dX

dt
= −X +O2(X,Y ),

dY

dt
= −δY 2 +O3(X,Y ),

(2.2)

where O2(X,Y ) and O3(X,Y ) begin with second and third order terms in X and Y ,
respectively. If a change of coordinates is performed to bring the system onto the
center manifold, the term−δY 2 does not change, then the equilibrium point Eγ =
(γ, 0) is a saddle-nod singularity. �

3. Bifurcations

The critical parameter value at which qualitative change of dynamics occur is called
bifurcation point. Qualitatively different dynamical behavior may appear in the model
with the variation of model parameters. To identify the possible qualitatively different
dynamical behavior with the variation of parameters c′, β, ξ, δ, α we do bifurcation
analysis of the system (1.3) with respect to c′, β, ξ, δ, α.
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3.1. The Bogdanov-Takens (or double zero) bifurcation analysis.

Theorem 3.1. If we choose δ and c′ as bifurcation parameters, then system (1.3)
undergoes Bogdanov-Takens bifurcation in a small neighborhood of E∗ (see Figure 16).

Proof. Consider the following system
dx

dt
= x(1− x

γ
)− (1− (c′ + λ1))xy

1 + αξ + x
= f(x, y),

dy

dt
=
β[(1− c′)x+ ξ]y

1 + αξ + x
− (δ + λ2)y = g(x, y),

(3.1)

where (λ1, λ2) is a parameter vector in a small neighbourhood of (0, 0). In this case,
with the help of the transformation x = x1 + x∗, y = y1 + y∗, c

′ = c′∗ + λ1 and
δ = δ∗ + λ2. System (3.1) can be written as

dx1
dt

= p0(λ) + a1(λ)x1 + b1(λ)x2 + p11x
2
1 + p12(λ)x1x2 + p22(λ)x

2
2 +O(∥x∥3),

dx2
dt

= q0(λ) + c1(λ)x1 + d1(λ)x2 + q11(λ)x
2
1 + q12(λ)x1x2 + q22(λ)x

2
2 +O(∥x∥3),

(3.2)

where a1(λ) = ∂f
∂x |(x∗,y∗), b1(λ) = ∂f

∂y |(x∗,y∗), c1(λ) = ∂g
∂x |(x∗,y∗), d1(λ) = ∂g

∂x |(x∗,y∗),

p11(λ) =
1
2
∂2f
∂x2 |(x∗,y∗), p12(λ) =

∂2f
∂x∂y |(x∗,y∗), p22(λ) =

1
2
∂2f
∂y2 |(x∗,y∗), q11(λ) =

1
2
∂2g
∂x2 |(x∗,y∗),

q12(λ) =
∂2g
∂x∂y |(x∗,y∗), q22(λ)

1
2
∂2f
∂y2 |(x∗,y∗). We then have,

p0(λ) = λ1x∗y∗, q0(λ) = −λ2y∗, a1 = x∗
γ ( γ−x∗

1+αξ+x∗
− 1), b1 = − (1−c′)x∗

1+αξ+x∗
,

c1 = βy∗[(1−c′)(1+αξ)−ξ]
(1+αξ+x∗)2

, d1 = 0, p11 = γ−x∗
2γ(1+αξ+x∗)

− 1+αξ+γ
2(1+αξ+x∗)2

− 1
2γ ,

p12 = (1−c′)(1+αξ+2x∗)
(1+αξ+x∗)2

, p22 = 0, q11 = − βy∗
(1+αξ+x∗)3

, q12 = 0, q12 = 0.

Making the affine transformation

y1 = x1, y2 = a1x1 + b1x2.

We have
dy1
dt

= p0(λ) + y2 + α11(λ)y
2
1 + α12(λ)y1y2 + α22(λ)y

2
2 +O(∥y∥),

dy2
dt

= q′0(λ) + c2(λ)y1 + d2(λ)y2 + β11(λ)y
2
1 + β12y1y2 + β22y

2
2 +O(∥y∥),

(3.3)

where
q0′(λ) = p0a1 + b1q0, c2 = b1c1 − a1d1, d2 = a1 + d1,

α11 =
p22a

2
1

b1
− p12a1

b1
+ p11, α12 = −2p22a1

b21
+ p12

b2
, α22 = p22

b21
,

β11 = b1q11 + a2(p11 − q12)− a2
1(p12−q22)

b1
+

p22a
3
1

b21
,

β12 = −(2
p22a

2
1

b21
− a1(p12−q22)

b1
− q12), β22 = p22a1

b21
+ q22

b2
.
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The functions q0′(λ), αkl, βkl, c2, d2 are smooth functions of λ. We have q′0(λ∗)=0.
Now, we consider the following transformation

z1 = y1, z2 = p0(λ) + y2 + α11(λ)y
2
1 + α12(λ)y1y2 + α22y

2
2 +O(∥y∥).

This transformation brings (3.3) into the following
dz1
dt

= z2,

dz2
dt

= g00(λ) + g10(λ)z1 + g01(λ)z2 + g20(λ)z
2
1 + g11(λ)z1z2 + g02(λ)z

2
2 +O(∥z∥3),

(3.4)

where g00(0) = 0, and z = (z1, z2). Furthermore, we also have
g00(λ) = q0′(λ)− p0(λ)d2(λ) + ...,
g10(λ) = c2(λ) + α12(λ)q0′(λ)− β12(λ)p0(λ) + ...,
g01(λ) = d2(λ) + 2α22(λ)q0′(λ)− α12(λ)p0(λ)− 2β22(λ)p0(λ) + ...,
g20(λ) = β11(λ)− α11(λ)d2(λ) + c2(λ)α12(λ) + ...,
g02(λ) = α12(λ) + β22(λ)− α22(λ)d1(λ) + ...,
g11(λ) = β12(λ) + 2α11(λ) + 2α22(λ)c2(λ)− α12(λ)d2(λ) + ....

Correspondingly,

g00(λ
∗) = 0, g10(λ

∗) = c2(λ
∗), g01(λ

∗) = d2(λ
∗),

g20(λ
∗) ̸= 0, g02(λ

∗) ̸= 0, g11(λ
∗) ̸= 0.

Again, we can write (3.4) as of the following form:

dz1
dt

= z2,

dz2
dt

= (g00(λ) + g10(λ)z1 + g20(λ)z
2
1 +O(∥z∥3))

+(g01(λ)z2 + (g11(λ)z1 +O(∥z∥2))z2 + (g02(λ) +O(∥z∥))z22
= µ(z1, λ) + ν(z1, λ)z2 +Φ(z, λ)z22 ,

(3.5)

where µ, ν, Φ are smooth functions and satisfy the following

µ(0, λ∗) = g00(λ
∗) = 0,

∂µ

∂z1
|(0,λ∗) = g10(λ

∗) = c2(λ
∗) = ρ1 ̸= 0,

ν(0, λ∗) = g01(λ
∗) = ρ2 ̸= 0.

There exists a C∞ function z1 defined in a small neighbourhood of λ = λ∗ such that
ϕ(λ∗) = 0, ν(ϕ, λ) = 0 for any λ ∈ N(λ∗)

z1 = u1 + ϕ(λ), z2 = u2.
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The above transformation brings the system (3.5) to the following system

du1
dt

= u2,

du2
dt

= (h00(λ) + h10(λ)u1 + h20(λ)u
2
1 +O(∥u1∥3))

+(h01(λ)u2 + (h11(λ)u1 +O(∥u∥2))u2 + (h02(λ) +O(∥u∥))u22
= µ(u1, λ) + ν(u1, λ)u2 +Φ(u, λ)u22,

(3.6)

where u = (u1, u2),

h00 = g00 + g10ϕ+ ..., h10 = g10 + 2g20ϕ+ ...,

h20 = g20 + ..., h01 = g01 + g11ϕ+ ...,

h11 = g11 + ..., h02 = g02 + ....

The coefficient of u2 term on the RHS of the second equations of (3.6) is given by

h01 = ν(0, λ) = g01 + g11ϕ+O(∥ϕ∥2) = [d2 + 2α22q0′ − α12p0 − 2β22p0 + ...]

+[β12 + 2α11 + α22c2 − α12d2 + ...]ϕ.

Thus we have the following

h01(0, λ) = g01(λ
∗) ̸= 0.

Let for λ ∈ N(λ∗), ϕ(λ) ∈M . Then in the regionM , ϕ(λ) can be approximated by

ϕ(λ) ≈ −g01(λ)
ρ2

.

Thus, (3.6) reduces to the following
du1
dt

= u2,

du2
dt

= h00(λ) + h10(λ)u1 + h20(λ)u
2
1 + h11(λ)u1u2 + h02(λ)u

2
2 +O(∥u∥)3.

(3.7)

We now introduce a new time scale, defined by dt = (1 + ψu1)dτ , where ψ = ψ(λ) is
a smooth function to be defined later. With this transformation, (3.7) reduces to

du1
dτ

= u2(1 + ψu1),

du2
dτ

= h00 + (h10 + h00ψ)u1 + (h20 + h10ψ)u
2
1 + h11u1u2 + h02u

2
2 +O(∥u∥)3.

(3.8)

Assume

ν1 = u1, ν2 = u2(1 + ψu1).
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Then we obtain,
dν1
dτ

= ν2,

dν2
dτ

= l00(λ) + l10(λ)ν1 + l20(λ)ν
2
1 + l11(λ)ν1ν2 + l02(λ)ν

2
2 +O(∥ν∥)3,

(3.9)

where

l00(λ) = h00, l10(λ) = h10 + 2h00ψ(λ),

l20 = h20 + 2h00ψ(λ) + h00(λ)ψ(λ)
2,

l11(λ) = h11(λ), l02(λ) = h02 + ψ(λ).

Now, we take ψ(λ) = −h02(λ) in order to get rid of ν22 -term. Then we have
dν1
dτ

= ν2,

dν2
dτ

= β1(λ) + β2(λ)ν1 + η(λ)ν21 + ζ(λ)ν1ν2 +O(∥ν∥)3,
(3.10)

where v = (v1, v2),

β1(λ) = h00(λ), β2(λ) = h10(λ)− 2h00(λ)h02(λ),

η(λ) = h20(λ)− 2h10(λ)h02(λ) + h202(λ)h00(λ) ̸= 0,

ζ(λ) = h11(λ) ̸= 0.

Now we introduce a new time scale given by

t = |η(λ)
ζ(λ)

|τ.

With the new stable variables ξ1 = η(λ)
ζ2(λ)ν1 and ξ2 = η2(λ)

ζ3(λ)ν2 such that s = signη(λ)
ζ(λ) =

signη(λ∗)
ζ(λ∗) = ρ2

g20(λ∗) = ±1. This yields (3.10) into the form
dξ1
dτ

= ξ2,

dξ2
dτ

= µ1 + µ2ξ1 + ξ21 + sξ1ξ2 +O(∥ξ∥)3,
(3.11)

where

µ1(λ) =
η(λ)

ζ2(λ)
β1(λ), µ2(λ) =

η(λ)

ζ2(λ)
β2(λ).

The system (3.11) is locally topologically equivalent near the origin for small ∥µ∥ to
the system

dξ1
dτ

= ξ2,

dξ2
dτ

= µ1 + µ2ξ1 + ξ21 + sξ1ξ2,
(3.12)
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where s = ±1. We have obtained the generic normal from of the Bogdanov-Takens
bifurcation for the system (3.12)

rank(
∂(µ1, µ2)

∂λ
)λ=λ∗ = 2,

J =

∣∣∣∣∣ ∂µ1

∂λ2

∂µ1

∂λ1
∂µ2

∂λ2

∂µ2

∂λ1

∣∣∣∣∣ ̸= 0.

�

3.2. Hopf bifurcation and local stability. We study the existence of a Hopf bi-
furcation and stability in a small neighborhood of E∗ when parameters α, β, c′ vary.
In this section, we consider system (1.3). It is easy to see that the determinant of
J |E∗ is positive if c′ < 1.

Theorem 3.2. Define c′∗ = 1− δ(γ+2)+2ξ(αδ−β)
γβ−β(1+αξ) then the following statements hold:

(a) If c′ > c′∗, the positive equilibrium E∗ is locally asymptotically stable.
(b) If c′ < c′∗, the positive equilibrium E∗ is unstable.
(c) If c′ = c′∗, then a Hopf bifurcation occurs around the positive equilibrium E∗.

Proof. (a), (b) The characteristic equation is given by

λ2 − tr(J)λ+ det(J) = 0,

with

det(J |E∗) =
β(1− c′)[(1− c′)(1 + αξ)− ξ]x∗y∗

(1 + αξ + x∗)3
> 0,

and

tr(J) =
x∗
γ
(

γ − x∗
1 + αξ + x∗

− 1.

Then the solutions of the characteristic equation give

λ1,2 =
1

2
tr(J |E∗)±

√
(tr(J |E∗))

2 − 4det(J |E∗).

By analyzing the distribution of roots of characteristic equation, we obtain the fol-
lowing results. We note that if det(J |E∗) > 0 then E∗ is locally asymptotically stable
if tr(J |E∗) < 0, that is, if

c′ > 1− δ(γ + 2) + 2ξ(αδ − β)

γβ − β(1 + αξ)
,
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and unstable if tr(J) > 0

c′ < 1− δ(γ + 2) + 2ξ(αδ − β)

γβ − β(1 + αξ)
.

(c) By defining c′ = 1− δ(γ+2)+2ξ(αδ−β)
γβ−β(1+αξ) , when c′ = c′∗, tr(J |E∗) = 0 and the charac-

teristic equation has a pair of imaginary eigenvalues λ = ±i
√
det(J |E∗).

Let λ(c′) = p(c′)± iq(c′) be the roots characteristic equation when c′ is near c′∗, then
p(c′) = 1

2 tr(J |E∗). In order to ensure the changes of stability through non-degenerate
Hopf bifurcation, we need to verify the transversality condition for Hopf bifurcation.
Obviously,

dp

dc′
=

d

dc′
Re(λ(c′))|c′=c′∗

̸= 0.

�

Theorem 3.3. Define α∗ = γ−2x∗−1
ξ , then the following statements hold:

(a) If α > α∗, the positive equilibrium E∗ is locally asymptotically stable.
(b) If α < α∗, the positive equilibrium E∗ is unstable.
(c) If α = α∗, then a Hopf bifurcation occurs around the positive equilibrium E∗.

Proof. The proof is similar to that of the Theorem (3.2). Let λ(α) = v(α) ± w(α)
be the roots characteristic equation when a is near α∗, then v(α) = 1

2 tr(J |E∗) =

−1
2

ξ(γ−x∗)x∗
γ(1+αξ+x∗)

,if γ > x∗ then

dv

dα
=

d

dα
Re(λ(α))|α=α∗ < 0.

If γ < x∗ then

dv

dα
=

d

dα
Re(λ(α))|α=α∗ > 0.

�

It is easy to see that existence of a Hopf bifurcation and stability in a small neigh-
bourhood of E∗ when parameter β vary.

4. Numerical simulation

In this section we present computer simulation of some solutions of the system
(1.3). Beside verification of our analytical findings, these numerical solutions are very
important from practical point of view. The phase portraits were calculated with
ode45 of MATLAB. This is done by calculating the solutions forward and backward
in time for initial values located on a equally spaced grid in the first quadrant. We use
the following symbols in the bifurcation diagrams of this paper: H: Hopf bifurcations
of an equilibrium point, Lpc: for the tangent bifurcations of limit cycles, BT: for the
Bogdanov-Takens.
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4.1. Continuation Curve of Equilibrium Point (one-parameter bifurcation
diagram ). Analytical studies can never be completed without numerical verifi-
cation of the derived results. The main aim of this section is to study the pat-
tern of bifurcation that takes place as we vary the parameters β, c′. This is ac-
tually done by studying the change in the eigenvalue of the Jacobian matrix and
also following the continuation algorithm. To start with, we consider a set of fixed
point initial solution, (x, y) = (1.6, 2.08), corresponding to a parameter set of val-
ues, γ = 4, c′ = 0.21, ξ = 0.2, β = 0.15, δ = 0.08, α = 0.6. We note that this
set of parameters are chosen such that the continuation will start from a stable
region of parameters. The characteristics of Hopf point, the limit cycle and the
general bifurcation may be explored. To compute curve of equilibrium from the
equilibrium point we take parameter c′ = 0.21 as the free parameter with fixed
γ = 4, ξ = 0.2, β = 0.15, δ = 0.08, α = 0.6. it is evident that the system has a
Hopf point in a neighbourhood of E∗, as predicted by the theory, with purely imagi-
nary eigenvalues ±i0.122066, in a small neighbourhood of E∗. For this Hopf point the
first Lyapunov coefficient is in Table 1 indicating a supercritical Hopf bifurcation. It
being negative implies that a stable limit cycle bifurcates from the equilibrium when
this loses stability. From Figures 1, 2, 6, 12 and 14 it is evident that the system has
a Hopf point at:

label= H, x= (1.440000 2.024567 0.190741),
First Lyapunov coefficient= -9.110524e-002,
label= BP, x= (4.000000 -0.000000 0.367333).

To compute curve of equilibrium from the equilibrium point we take β = 0.15
as the free parameter with fixed γ = 4, c′ = 0.21, ξ = 0.2, δ = 0.08, α = 0.6. It is
evident that the system has two Hopf point in a small neighbourhood of E∗ with
purely imaginary eigenvalues ±i0.000858, ±i0.121427. For this Hopf point the first
Lyapunov coefficient ℓ1 is in Table 1 indicating a supercritical Hopf bifurcation. From
Figures 3, 4, 5, 11 and 13 it is evident that the system has a Hopf point

label= H, x= (1.440002 2.073924 0.153110),
First Lyapunov coefficient= -9.087072e-002,
label= BP, x= (0.000000 1.417722 0.448000),
label= H, x= (0.000003 1.417724 0.447996),
First Lyapunov coefficient= -9.148776e-001.

To compute curve of equilibrium from the equilibrium point we take α = 0.39 as
the free parameter with fixed γ = 4, c′ = 0.21, ξ = 0.2, δ = 0.08, β = 0.15. It is
evident that the system has a Hopf point in a small neighbourhood of E∗ with purely
imaginary eigenvalues ±i0.118582. For this Hopf point the first Lyapunov coefficient
ℓ1 is in Table 1 indicating a supercritical Hopf bifurcation. From Figures 7 and 8 it
is evident that the system has a Hopf point
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label= H, x= (1.460958 2.040107 0.390430),
First Lyapunov coefficient= -9.0218824e-002.

By selecting Hopf point in the one-parameter bifurcation diagram of the equilib-
rium as initial point, we can plot the limit cycles and bifurcations of limit cycles
starting from the Hopf point (see Figures 11 and 12).

When we take β = 0.15 as the free parameter:
Limit point cycle (period = 5.174496e+001, parameter = 1.531102e-001),
Normal form coefficient = -1.160727e-001.

4.2. Two-parameter bifurcation diagram. By selecting limit point in the one-
parameter bifurcation diagram of the equilibrium as initial point, and taking β, c′ as
the free parameter (see Figure 9).
label= BT, x= (1.440000 9.175039 0.821429 0.448000 0.000000),
(a,b)= (-3.842550e-010, 2.812500e-001).

Taking ξ, c′ as the free parameter (see Figure 10).
label= BT, x= (1.264706 3.507104 0.466666 0.784313 0.000000),
(a,b)= (1.123532e-008, -2.311829e-001).

Taking ξ, α as the free parameter (see Figure 15).
label= BT, x= (0.000000 5.063361 1.406256 2.133363 0.000000),
(a,b)= (-2.70825e-018, -1.974973e-001).

Taking δ, c′ as the free parameter (see Figure 16).
label= BT, x= (1.440000 9.175038 0.821429 0.026786 0.000000),
(a,b)= (-2.950715e-010, 2.812500e-001).

Table 1. One-parameter bifurcation points and eigenvalues.

lable eigenvalues ℓ1 free parameter

H λ1,2 = 7.4404e− 009± i0.122066 ℓ1 = −9.110524e− 002 c′

H λ1,2 = 9.93684e− 007± i0.000858 ℓ1 = −9.148776e− 001 β

H λ1,2 = −2.14975e− 007± i0.121427 ℓ1 = −9.087072e− 001 β

H λ1,2 = −1.44344e− 007± i0.118582 ℓ1 = −9.218824e− 002 α

We notice that the numerical bifurcation diagram and numerical phase portraits con-
firm the results established by the theory.
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Table 2. Two-parameter bifurcation points, limit cycles and eigenvalues.

lable eigenvalues free parameter

BT λ1,2 = −3.22138e− 015± i2.74842e− 005 c′, δ

BT λ1,2 = −2.14898e− 014± i0.000175 c′, ξ

BT λ1,2 = ±0.00384514 c′, β

BT λ1,2 = 1.59595e016 α, ξ

LPC µ1,2 = 0.999914, 1 β

Table 3. Sensitivity of parameter α, β, c′ on population (x), (y).

variable (x) variable (y) (α) (β) (c′) status

1.452338 1.772509 − − 0.180741 unstable Figures 1, 14

1.485092 2.072778 − − 0.190741 stable Figure 2

8.9650e− 007 1.419166 − 0.447995 − stable Figure 4

3.9229e− 006 1.050957 − 0.437996 − unstable Figure 3

1.023190 1.820431 0.29043 − − unstable Figure 8

1.462115 2.057857 0.39043 − − stable Figure 8

Figure
1. Trajectories of
system (1.3), when
c′ = 0.180741. E∗
is locally asymptoti-
cally unstable.
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Figure
2. Trajectories of
system (1.3), when
c′ = 0.190741. E∗
is locally asymptoti-
cally stable.
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5. Conclusion

In this paper, we have studied the dynamics of a predator-prey system with har-
vesting of the predator guided by its population. We obtain conditions that affect the
persistence of the system. Local asymptotic stability of various equilibrium solutions
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Figure
3. Trajectories of
system (1.3), when
β = 0.437996.
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Figure
4. Trajectories of
system (1.3), when
β = 0.447996.
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is explored to understand the dynamics of the model system. Based on the normal
form theory, we find that it is a cusp point of co-dimension 2 so that Bogdanov-Takens
bifurcation may occur. In contrast, by the introduction of prey refuge providing addi-
tional food to predator, our proposed model (1.3), can exhibit much richer behaviors,
i.e., numerous bifurcations may occur including the, Hopf,and Bogdanov-Takens bi-
furcations. The detected bifurcations have biological implications. At a computed
supercritical Hopf bifurcation a stable limit cycle is born that gives rise to periodic
behavior of the populations. In fact, if the predator death rate is smaller than the
bifurcation parameter at a supercritical Hopf, both predator and prey coexist in the
steady state, but if the predator death rate exceeds this value of bifurcation parameter
then both predator and prey still coexist and their densities vary periodically.

In summary, our analysis of the dynamics of the dynamics system can assist
decision-making in a variety of field management to improve implementation of har-
vesting strategies.
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Figure
5. Bifurcation di-
agram of the equi-
librium in a small
neighbourhood of E∗
with the variation
of the parameter
β undergoing a
supercritical Hopf
bifurcation.
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Figure
6. Bifurcation di-
agram of the equi-
librium in a small
neighbourhood of E∗
with the variation
of the parameter
c′ undergoing a
supercritical Hopf
bifurcation.
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Figure
7. Continuation
curves of equilibrium
with the variation of
the parameter α.
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Figure 8. Periodic
solution for system
(1.3) with the varia-
tion of α at E∗.
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Figure 9. Hopf
curve in model (1.3),
two-parameter bifur-
cation diagram when
we take β, c′ as the
free parameter with
fixed ξ, δ, γ, α.
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Figure 10. Hopf
curve in model (1.3),
two-parameter bifur-
cation diagram when
we take ξ, c′ as the
free parameter with
fixed β, δ, γ, α.
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Figure 11. The family of limit cycles and bifurcations of limit cycles
starting from the Hopf point with the variation of the parameter
β = 0.447996.

0
0.5

1
1.5

2
2.5

0.5
1

1.5
2

2.5

0.16

0.165

0.17

x

LPC
LPC

H 
H y

β



CMDE Vol. 7, No. 3, 2019, pp. 454-474 471

Figure 12. The family of limit cycles starting from the Hopf point
with the variation of the parameter c′ = 0.190741.
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Figure 13. Hopf bifurcation occurs at E∗ and bifurcating periodic
solution for system (1.3) with the variation of β.
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Figure 14. Periodic solution for system (1.3) with c′

.
0 50 100 150 200 250 300

1.95

2

2.05

2.1

t

y
stable in c’=0.190

unstable in c’=0.180

Figure 15. Hopf
curve in model (1.3),
two-parameter bifur-
cation diagram when
we take ξ, α as the
free parameter with
fixed β, δ, γ, c′.
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Figure 16. Hopf
curve in model (1.3),
two-parameter bifur-
cation diagram when
we take δ, c′ as the
free parameter with
fixed ξ, β, γ, α.
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