تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,968 |
تعداد دریافت فایل اصل مقاله | 15,213,957 |
ردیابی جهش های ژنی مرتبط با مقاومت به بنزیمیدازول ها و استروبیلورین ها در جدایه های Botrytis cinerea جمع آوری شده از انگور در استان آذربایجان غربی | ||
پژوهش های کاربردی در گیاهپزشکی | ||
مقاله 5، دوره 8، شماره 1، تیر 1398، صفحه 57-70 اصل مقاله (736.31 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
وفا رضایی راد1؛ مسعود ابرین بنا* 2؛ سعید رضایی3 | ||
1دانشجوی سابق کارشناسی ارشد بیماری شناسی گیاهی، گروه بیماری شناسی گیاهی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران. | ||
2استادیار، گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه ارومیه. | ||
3استادیار، گروه بیماری شناسی گیاهی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران. | ||
چکیده | ||
چکیده کنترل شیمیایی با استفاده از قارچکشها مهمترین روش کنترل Botrytis cinerea در محصولات مختلف به شمار میرود. ولی مدیریت موثر این قارچ مستلزم وجود اطلاعاتی در زمینه وجود و فراوانی سویههای مقاوم به قارچکشها و میزان مقاومت و نیز جهشهای مرتبط با بروز مقاومت است. در این تحقیق حساسیت 103 جدایه B. cinerea که از تاکستانهای مناطق مختلف استان آذربایجان غربی جمعآوری شده بودند، نسبت به کاربندازیم و آزوکسیاستروبین مورد ارزیابی قرار گرفت. در بین جدایههای مورد بررسی، 39 جدایه (38 درصد) به کاربندازیم و 35 جدایه (34 درصد) نسبت به آزوکسیاستروبین خیلی مقاوم بودند. توالییابی بخشی از ژن بتاتوبولین نشان داد که در سویههای مقاوم به کاربندازیم، جهش از GAG به GCG اتفاق افتاده است که منجر به جایگزینی آلانین با اسید گلوتامیک در کدون 198 و بروز فنوتیپ Ben R1 میشود. بررسی توالی بخشی از ژن cyt b مشخص نمود که سویههای مقاوم به آزوکسیاستروبین، یک جهش نقطهای از GGT به GCT داشتند که موجب جایگزینی آلانین با گلایسین در کدون 143 میشود. همچنین یکی از جدایههای حساس به آزوکسیاستروبین دارای اینترون Bcbi-143/144 بلافاصله پس از کدون 143 در ژن cyt b بود. نتایج نشان داد که استفاده از قارچکشهای گروههای بنزیمیدازول و استروبیلورین در مدیریت B. cinerea در تاکستانهای منطقه قابل توصیه نیست. البته با توجه به اینکه سویههای مقاوم به بنزیمیدازولها دارای فنوتیپ Ben R1 بودند، میتوان از دیاتوفنکارب یا زوکسامید به همراه یکی از قارچکشهای بنزیمیدازولی استفاده کرد و سویههای حساس و مقاوم را به طور موثری کنترل نمود. | ||
کلیدواژهها | ||
واژههای کلیدی: بتاتوبولین؛ پوسیدگی خاکستری؛ سیتوکروم b؛ مقاومت به قارچکش | ||
مراجع | ||
امینی ر، 1393. ارزیابی حساسیت جدایههای Botrytis cinerea جمعآوری شده از تاکستانهای استان آذربایجان غربی نسبت به چهار قارچکش سیستمیک. پایاننامه کارشناسی ارشد بیماریشناسی گیاهی، دانشکده کشاورزی، دانشگاه ارومیه. امینی ر و ابرینبنا م، 1395. مقاومت برخی جدایههای Botrytis cinerea نسبت به قارچکشهای بنومیل، ایپرودیون و فنهگزامید در استان آذربایجان غربی. پژوهشهای کاربردی در گیاهپزشکی، جلد پنجم، شماره 1. صفحههای 195 تا 207. Angelini RMM, Rotolo C, Masiello M, Gerin D, Pollastro S and Faretra F, 2014. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Management Science 70(12): 1785–1796. Asadollahi M, Szojka A, Fekete E, Karaffa L, Takács F, Flipphi M, and Sándor E, 2013. Resistance to QoI fungicide and cytochrome b diversity in the Hungarian Botrytis cinerea population. Journal of Agricultural Science and Technology 15(2): 397–407. Banno S, Yamashita K, Fukumori F, Okada K, Uekusa H, Takagaki M, Kimura M and Fujimura M, 2009. Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome gene. Plant Pathology 58(1): 120–129. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M and Parr-Dobrzanski B, 2002. The strobilurin fungicides. Pest Management Science 58(7): 649–662. Brent KJ and Hollomon DW, 2007. Fungicide Resistance in Crop Pathogens: How can it be Managed?. Fungicide Resistance Action Committee: FRAC Monograph No. 1. Chatzidimopoulos M, Papaevaggelou D and Pappas AC, 2013. Detection and characterization of fungicide resistant phenotypes of Botrytis cinerea in lettuce crops in Greece. European Journal of Plant Pathology 137(2): 363–376. Elad Y, Williamson B, Tudzynski P and Delen N, 2004. Botrytis spp. and diseases they cause in agricultural systems an introduction. Pp 1–8 In: Elad Y, Williamson B, Tudzynski P and Delen N (eds.) Botrytis: Biology, Pathology and Control. Kluwer Academic Press, Dordrecht, The Netherlands. Fernández-Ortuño D, Torés JA, de Vicente A and Perez-García A, 2008. Mechanisms of resistance to QoI fungicides in phytopathogenic fungi. International Microbiology 11(1): 1–9. Fillinger S and Walker A, 2016. Chemical control and resistance management of Botrytis diseases. Pp 189–216 In: Fillinger S and Elad Y (eds.) Botrytis- The Fungus, The Pathogen and Its Management in Agricultural Systems. Springer, Switzerland. Gisi U, Sierotzki H, Cook A and McCaffery A, 2002. Mechanisms influencing the evolution of resistance to QoI inhibitor fungicides. Pest Management Science 58(9): 859–867. Hahn M, 2014. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology 7(4): 133–141. Ishii H, Fountaine J, Chung W, Kansako M, Nishimura K, Takahashi K and Oshima M, 2009. Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry. Pest Management Science 65(8): 916–922. Jiang J, Ding L, Michailides TJ, Li H and Ma Z, 2009. Molecular characterization of azoxystrobin-resistant isolates of Botrytis cinerea. Pesticide Biochemistry and Physiology 93(2): 72–76. Kim YK and Xiao CL, 2010. Resistance to pyraclostrobin and boscalid in populations of Botrytis cinerea from stored apples in Washington State. Plant Disease 94(5): 604–612. Leroux P, 2007. Chemical control of Botrytis and its resistance to chemical fungicides. Pp 195–217 In: Elad Y, Williamson B, Tudzynski P and Delen N (eds.) Botrytis: Biology, Pathology and Control. Kluwer Academic Press, Dordrecht, The Netherlands. Leroux P, Chapeland F, Desbrosses D and Gredt M, 1999. Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards. Crop Protection 18(10): 687–697. Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M and Chapeland F. 2002. Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manegment Science 58(9): 876–888. Leroux P, Gredt M, Leroch M and Walker AS, 2010. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology 79(19): 6615–6630. Lu XH, Jiao XL, Hao JJ, Chen AJ and Gao WW, 2016. Characterization of resistance to multiple fungicides in Botrytis cinerea from Asian ginseg in northern China. European Journal of Plant Pathology 144(3): 467–476. Malandrankis A, Markoglou A and Ziogas B, 2011. Molecular characterization of benzimidazole-resistant B. cinerea field isolates with reduced or enhanced sensitivity to zoxamide and diethofencarb. Pesticide Biochemistry and Physiology 99(1): 118–124. Markoglou AN, Malandrankis AA, Vitoratos AG and Ziogas BN, 2006. Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. European Journal of Plant Pathology 115(2): 149–62. Park SY, Jung OJ, ChungYR and Lee CW, 1997. Isolation and characterization of a benomyl-resistant form of beta-tubulin-encoding gene from the phytopathogenic fungus Botryotinia fuckeliana. Molecular Cells 7(1): 104–109. Pearson RC and Goheen AC, 1988. Compendium of Grape Diseases. APS Press, USA. Samuel S, Papayiannis LC, Veloukas T, Hahn M and Karaoglanidis GS, 2011. Evaluation of the G143E mutation and cyt b intron presence in the cytochrome bc-1 gene conferring QoI resistance in Botrytis cinerea populations from several hosts. Pest Management Science 67(8): 1029–1039. Sierotzki H, 2015. Respiration inhibitors. Pp: 119–143 In: Ishii H and Hollomon DW (eds.) Fungicide Resistance in Plant Pathogens. Springer, Tokyo, Japan. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F and Higgins DG, 1997. The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876–4882. Vallières C, Trouillard M, Dujardin G and Meunier B, 2011. Deleterious effect of Qo inhibitor compound resistance-conferring mutation G143A in the intron containing cytochrome b gene and mechanisms for bypassing it. Applied and Environmental Microbiology 77(6): 2088–2093. Williamson B, Tudzynski B, Tudzinski P and Vankan JA, 2007. Botrytis cinerea: the case of grey mould disease. Molecular Plant Pathology 8(5): 561–580. Wood PM and Hollomon DW, 2003. A critical evaluation of the role of alternative oxidase in the performance of strobilurin and related fungicides acting at the QO site of complex III. Pest Management Science 59(5): 499–511. Yarden O and Katan T, 1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83(12): 1478–1483. Yin YN, Kim YK and Xiao CL, 2012. Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Phytopathology 102(3): 315–322. Zhang CQ, Hu JL, Wei FL and Zhu GN, 2009. Evolution of resistance to different classes of fungicides in Botrytis cinerea from greenhouse vegetables in China. Phytoparasitica 37(4): 351–359. Zhang CQ, Liu SY and Zhu GN, 2010. Detection and characterization of benzimidazole resistance of Botrytis cinerea in greenhouse vegetables. European Journal of Plant Pathology 126(4): 509–515. Ziogas BN, Nikou D, Markoglou AN, Malandrakis AA Vontas J, 2009. Identification of a novel point mutation in the β-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. European Journal of Plant Pathology 125(1): 97–107.
| ||
آمار تعداد مشاهده مقاله: 724 تعداد دریافت فایل اصل مقاله: 502 |