تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,255 |
تعداد دریافت فایل اصل مقاله | 15,214,101 |
رفتار سایشی نانوکامپوزیت های زمینه اپوکسی حاوی نانوصفحات گرافن اصلاح سطحی شده | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 6، دوره 49، شماره 3، آبان 1398، صفحه 47-53 اصل مقاله (2.29 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
حسام امیربیگی1؛ اسماعیل توحیدلو* 2؛ حامد خسروی2 | ||
1دانشجوی کارشناسی ارشد، گروه مهندسی مواد، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان | ||
2استادیار، گروه مهندسی مواد، دانشکده مهندسی شهید نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان | ||
چکیده | ||
در تحقیق حاضر، رفتار سایشی نانوکامپوزیتهای زمینه اپوکسی حاوی نانوصفحات گرافن مورد بررسی قرار گرفت. در گام نخست، سطح نانوصفحات گرافن با ترکیب سیلانی 3-آمینو پروپیل تری متوکسی سیلان (3-APTMS) اصلاح شد و در ادامه، تأثیر افزودن مقادیر مختلف (0، 05/0، 1/0، 3/0 و 5/0 درصد وزنی) نانوگرافن اصلاح سطحی شده و همچنین نقش عملیات اصلاح سطحی گرافن بر رفتار تریبولوژیکی نمونههای نانوکامپوزیتی مورد مطالعه قرار گرفت. نتایج این تحقیق نشان داد که بهترین خواص سایشی در نمونه حاوی 3/0 درصد وزنی نانوگرافن اصلاح سطحی شده با کاهشی به ترتیب حدود 40 درصد و 68 درصد در ضریب اصطکاک و نرخ سایش در مقایسه با نمونه اپوکسی حاصل شد. همچنین نتایج این تحقیق نشاندهنده این مورد بود که عملیات سطحی نانوصفحات گرافن با ترکیب سیلان میتواند نقش بسیار موثری را در بهبود رفتار سایشی نانوکامپوزیت نهایی ایفا کند و در نمونه حاوی 3/0 درصد وزنی گرافن، عملیات اصلاح سطحی باعث کاهشی 48 درصدی نرخ سایش و 28 درصدی ضریب اصطکاک در مقایسه با نمونه اصلاح سطحی نشده شد. مکانیزمهای مربوطه در ارتباط با نقش نانوصفحات گرافن در بهبود رفتار سایشی زمینههای اپوکسی پیشنهاد شد. | ||
کلیدواژهها | ||
نانوکامپوزیت؛ نانوصفحات گرافن؛ اصلاح سطحی؛ رفتار سایشی | ||
مراجع | ||
[1] May C. A., Epoxy resin: chemistry and technology, 2nd ed. New York, NY: Marcel Dekker, pp. 4-10, 1998. [2] Brydson J. A., “Plastics materials, 7th ed. London, UK: Butterworth-Heinemann, pp. 744-772, 1999. [3] Chen Z., Dai X. J., Magniez K., Lamb P. R., Leal D. R. C., Fox B. L., and Wang X., Improving the mechanical properties of epoxy using multiwalled carbon nanotubes functionalized by a novel plasma treatment, Composites: Part A, Vol. 45, pp. 145-152, 2013. [4] Rana S., Alagirusamy R., and Joshi M., Mechanical properties of epoxy reinforced with homogeneously dispersed carbon nanofiber, International Journal of Plastics Technology, Vol. 14, No. 2, pp. 224-233, 2010. [5] Conradi M., Zorko M., Kocijan A., and Verpoest I., Mechanical properties of epoxy composites reinforced with a low volume fraction of nanosilica fillers, Materials Chemistry and Physics, Vol. 137, pp. 910-915, 2013. [6] Shimpi N. G., and Mishra S., Influence of surface modification of montomorillonite on properties of PVC nanocomposites, Journal of Composite Materials, Vol. 45, No. 23, pp. 2447-2453, 2011. [7] Navoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., and Firsov A. A., Electric field effect in atomically thin carbon films, Science, Vol. 306, pp. 666-669, 2004. [8] Saravanan N., Rajasekar R., Mahalakshmi S., Sathishkumar T. P., Sasikumar K. S. K., and Sahoo S., Graphene and modified graphene-based polymer nanocomposites-A review, Journal of Reinforced Plastics and Composites, Vol. 33, No. 12, pp. 1158-1170, 2014. [9] Eqra R., Janghorbanand K., and Danesh Manesh H., Effect of number of graphene layers on mechanical and dielectric properties of graphene-epoxy nanocomposites, Plastics, Rubber and Composites, Vol. 44, No. 10, pp. 405-412, 2015. [10] Geng Y.,Wang S. J., and Kim J. K., Preparation of graphite nanoplatelets and graphene sheets, Journal of Colloid and Interface Science, Vol. 336, pp. 592-598, 2009. [11] Liang J., Wang Y., Huang Y., Ma Y., Liu Z., Cai J., Zhang C., Gao H., and Chen Y., Electromagnetic interference shielding of graphene/epoxy composites, Carbon, Vol. 47, pp. 922-925, 2009. [12] Lee W. D., and Im S. S., Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethyleneterephthalate)nanocomposits prepared by in-situ polymerization, Journal of Polymer Science Part B: Polymer Physics, Vol. 45, pp. 28-40, 2007. [13] Weng W., Chen G., and Wu D., Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites, Polymer, Vol. 46, pp. 6250-6257, 2005. [14] Kuilla T., Bhadra S., Yao D., Kim N. H., Bosed S., and Lee J. H. Recent advances in graphene based polymer composites, Progress in Polymer Science, Vol. 35, pp. 1350-1375, 2010. [15] Li D., Muller M. B., Gilje S., Kaner R. B., and Wallac G. G., Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology, Vol. 3, pp. 101-105, 2007. [16] Liu J., Yang W., Tao L., Li D., Boyer C., and Davis T. P., Thermosensitive graphene nanocomposites formed using pyrene-terminal poly-mersmade by RAFT polymerization, Journal of Polymer Science, Part A Polymer Chemistry, Vol. 48, pp. 425-433, 2010. [17] Kumar S. K., and Cho J. W., Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites, Applied Surface Science, Vol. 266, pp. 360-367, 2013. [18] Ashori A., Rahmani H., and Bahrami R., Preparation and characterization of functionalized graphene oxide/carbon fiber/epoxy nanocomposites, Polymer Testing, Vol. 48, pp. 82-88, 2015. [19] Lee C. Y., Bae J. H., Kim T. Y., Chang S.H., and Kim S.Y., Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites, Composites: Part A, Vol. 75, pp. 11-17, 2015. [20] Jing Q., Liu W., Pan Y., Silberschmidt V. V., Li L., and Dong Z., Chemical functionalization of graphene oxide for improving mechanical and thermal properties of polyurethane composites, Materials and Design, Vol. 85, pp. 808-814, 2015. [21] Wan Y. J., Gong L. X., Tang L. C., Wu L. B., and Jiang J. X., “Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide”, Composites: Part A, Vol. 64. pp. 79-89, 2014. [22] Lee M. W., Wang T. Y., and Tsai J. L., Mechanical properties of nanocomposites with functionalized graphene, Journal of Composite Materials, 2016. DOI: 10.1177/0021998315625788. [23] Li W., Zhou B., Wang M., Li Z., and Ren R., Silane functionalization of graphene oxide and its use as a reinforcement in bismaleimide composites, Journal of Materials Science, Vol. 50, pp. 5402-5410, 2015. [24] Dasari A., Yu Z. Z., and Mai Y. W., Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites, Materials Science and Engineering R, Vol. 63, pp. 31-80, 2009. [25] Guo Q. B., Rong M. Z., Jia G. L., Lau K. T., and Zhang M. Q., Sliding wear performance of nano-SiO2/short carbon fiber/epoxy hybrid composites, Wear, Vol. 266, pp. 658-665, 2009. [26] Wang H., Xie G., Zhu Z., Ying Z., Zeng Y., Enhanced tribological performance of the multi-layer graphene filled poly(vinyl chloride) composites, Composites: Part A, Vol. 67, pp. 268-273, 2014. [27] Shen X. J., Pei X. Q., Fu S. Y., and Friedrich K., Significantly modified tribological performance of epoxy nanocomposites at very low graphene oxide content, Polymer, Vol. 54, pp. 1234-1242, 2013. [28] Shah R., Datashvili T., Cai T., Wahrmund J., Menard B., Menard K. P., Brostow W., and Perez J., Effects of functionalized reduced graphene oxide on frictional and wear properties of epoxy resin, Materials Research Innovations, Vol. 19, No. 2, pp. 97-106, 2015. [29] Liu H., Li Y., Wang T., and Wang Q., In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites, Journal of Materials Science, Vol. 47, pp. 1867-1874, 2012. [30] Salon M. C. B., and Belgacem M. N., Hydrolysis-condensation kinetics of different silane coupling agents, Phosph Sulfur Silicon, Vol. 186, pp. 240-254, 2011. [31] Khosravi H., and Eslami-Farsani R., On the mechanical characterizations of unidirectional basalt fiber/epoxy laminated composites with 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes-enhanced matrix, Journal of Reinforced Plastics and Composites, Vol. 35, No. 5, pp. 421-434, 2016. [32] Akhlaghi F., and Zare-Bidaki A. Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024-graphite composites produced by in situ powder metallurgy method, Wear, Vol. 266, pp. 37-45, 2009.
[33] Brancato V., Visco A. M., Pistone A., Piperno A., and Iannazzo D., Effect of functional groups of multi-walled carbon nanotubes on the mechanical, thermal and electrical performance of epoxy resin based nanocomposites, Journal of Composite Materials, Vol. 47, No. 24, pp. 3091-3103, 2012. [34] Lee J. H., Rhee K. Y., and Park S. J., The tensile and thermal properties of modified CNT-reinforced basalt/epoxy composites, Materials Science and Engineering A, Vol. 527, pp. 6838-6843, 2010. [35] Kim M. T., Rhee K. Y., Park S. J., and Hui D., Effects of silane-modified carbon nanotubes on flexural and fracture behaviors of carbon nanotube-modified epoxy/basalt composites, Composites: Part B, Vol. 43, pp. 2298-2302, 2012. [36] Wang C., Lan Y., Li X., Yu W., and Qian Y., Improving the mechanical, electrical, and thermal properties of polyimide by incorporating functionalized graphene oxide, High Performance Polymers, 2015. DOI: 10.1177/0954008315598818. [37] Shan S., Chen X., Xi Z., Yu X., Qu X., and Zhang Q., The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin, High Performance Polymers, Vol. 29, No. 1, pp. 113-123, 2017. [38] Mirzapour A., Asadollahi M. H., Baghshaei S., and Akbari M., Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite, Composites: Part A, Vol. 63, pp. 159-167, 2014.
| ||
آمار تعداد مشاهده مقاله: 310 تعداد دریافت فایل اصل مقاله: 317 |