تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,267 |
تعداد دریافت فایل اصل مقاله | 15,216,898 |
ترکیب بهینه متغیرها برای شبیه¬سازی رواناب در حوزه آبخیز امامه با استفاده از آزمون گاما | ||
دانش آب و خاک | ||
مقاله 5، دوره 23، شماره 4، اسفند 1392، صفحه 59-72 اصل مقاله (907.51 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
علیرضا شریفی1؛ یعقوب دین¬پژوه2؛ احمد فاخری¬فرد3؛ علیرضا مقدم¬نیا4 | ||
1دانشجوی سابق کارشناسی ارشد منابع آب، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
2دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
3استاد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز | ||
4دانشیار، گروهاحیایمناطقخشکوکوهستانی،دانشکدهمنابعطبیعی،دانشگاهتهران | ||
چکیده | ||
رواناب ناشی از بارش یک فرایند پیچیده و غیرخطی بوده و بنابراین، مدلسازی آن چندان آسان نیست. هدف این مطالعه کاربرد آزمون گاما برای انتخاب ترکیب بهینه متغیرهای ورودی در مدلسازی رواناب رودخانه حوزه آبخیز امامه میباشد. برای تعیین بهینه تعداد دادههای مورد نیاز برای مدلسازی از آزمون M استفاده شد. دادههای بارندگی P(t) و روانابR(t) در مقیاس روزانه و در طول دوره آماری 1388- 1379 استفاده شد. همچنین هشت متغیر ورودی شامل سری مربوط به جریان با تأخیر یک روزه (R(t-1))، دو روزه (R(t-2))، سه روزه (R(t-3)) و چهار روزه (R(t-4))، سری بارندگی روزانه بدون تأخیر زمانی (P(t)) و با تأخیرهای یک روزه (P(t-1))، دو روزه (P(t-2)) و سه روزه (P(t-3)) استفاده شد. مدلسازی جریان آب رودخانه با استفاده از تعداد نقاط بهینه متغیرهای منتخب با روشهای شبکه عصبی مصنوعی و رگرسیون خطی محلی انجام شد. نتایج نشان داد که شش متغیر شامل P(t)، P(t-1)، P(t-2)، P(t-3)، R(t-1) و R(t-2) بهینه ترکیب متغیرها در مدلسازی جریان رودخانه حوزه مذکور میباشند. همچنین با استفاده از خروجی آزمون M تعداد 1405 داده برای بخش آموزش مدلسازی مناسب تشخیص داده شد. نتایج حاکی از این واقعیت است که روش رگرسیون خطی محلی LLR)) در قسمت آموزش از دقت بالاتری نسبت به روش شبکههای عصبی مصنوعی برخوردار است، در حالیکه در مرحله تست مدل، روش شبکه عصبی از دقت بیشتری برخوردار بود. مقدار R2 و RMSE روش LLR در بخش آموزش بترتیب معادل 96/0 و 7/1 بدست آمد. | ||
کلیدواژهها | ||
آزمون گاما؛ حوزه آبخیز امامه؛ رگرسیون خطی محلی؛ شبکه عصبی مصنوعی | ||
آمار تعداد مشاهده مقاله: 3,328 تعداد دریافت فایل اصل مقاله: 2,546 |