تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,047 |
تعداد دریافت فایل اصل مقاله | 15,213,996 |
بررسی نظری و تجربی تولید آب شیرین با استفاده از آب شیرین کنهای گرمایی در حالت فعال و غیر فعال | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 29، دوره 50، شماره 2 - شماره پیاپی 91، مرداد 1399، صفحه 261-270 اصل مقاله (1.79 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2020.8788 | ||
نویسندگان | ||
پیام هوشمند* 1؛ محمدبهشاد شفیعی2؛ میلاد محسن زاده3 | ||
1مربی، گروه مهندسی مکانیک، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران | ||
2استاد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران | ||
3کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران | ||
چکیده | ||
در این پژوهش به مدلسازی تحلیلی و ارزیابی تجربی تلفیق یک سیستم فتوولتائیک/گرمایی با آب شیرینکن خورشیدی پرداخته شده است و عملکرد این سیستم با آب شیرینکن متداول مشابه مورد مقایسه قرارگرفته است. آزمایش 1 حالت فعال (مخزن آب شیرین کن، لولهگرمایی و سلولخورشیدی) و آزمایش 2 حالت غیر فعال (مخزن آب شیرین کن) در نظر گرفته شد. پس از ساخت آب شیرینکن در ابتدا عمق بهینه آب شور در مخزن آب به صورت تجربی اندازهگیری شد. در ادامه میزان تولید آب شیرین بررسی گردید که بیشینه آب تولید شده در آزمایش 1، مربوط به ساعت 14:00 و به میزان ( ) 292/0 بود و بیشینه آب تولید شده در آزمایش 2، مربوط به ساعت 14:00 و به میزان ( ) 406/0 بود. در ادامه مدلسازی سیستم بر اساس تحلیل و حل معادلات ترمودینامیکی و انتقال گرمای حاکم بر مسئله انجام شد. بعد از ارائه نتایج مدلسازی سیستم آب شیرینکن خورشیدی، نتایج تجربی و نظری مقایسه شدند و به تجزیه و تحلیل آن ها پرداخته شد. | ||
کلیدواژهها | ||
لولهگرمایی ترموسیفون؛ سیستم فتوولتائیک/گرمایی؛ مدلسازی آب شیرینکن؛ راندمان الکتریکی و گرمایی | ||
مراجع | ||
[1] Bazargan M and Ahmadi M., Freshwater production using wet air underground cooling and solar energy. Journal of Renewable Energy, Vol. 1, pp. 4-15, 2014. [2] Lui J., Dorjderem A., Fu J., Lei X., Lui H., Macer D., Qiao Q., Sun A., Tachiyama K., Yu L. and Zheng Y., Water ethics and water resource management, Ethics and Climate Change in Asia and the Pacific (ECCAP) Project. UNESCO Bangkok, 2011. [3] Water and Jobs, the United Nations World Water Development Report, United Nations Educational. Scientific and Cultural Organization, 2016. [4] Renewable energy desalination: an emerging solution to close the Middle East and NorthAfrica’s water gap. MENA Development Report, 2012. [5] Manokar A.M., Murugavel K.K. and Esakkimuthu G., Different parameters affecting the rate of evaporation and condensation on passive solar still-a review. Renewable and Sustainable Energy Reviews, Vol. 38, pp. 309–322, 2014. [6] Jones J.A., Lackey L.W. and Lindsay K.E., Effects of wind and choice of cover material on the yield of a passive solar still. Desalination and Water Treatment, Vol. 52, pp. 48–56, 2014. [7] Nafey A.S., Abdelkader M., Abdelmotalip A. and Mabrouk A., Parameters affecting solar still productivity. Energy Conversion and Management, Vol. 41, pp. 1797–1809, 2000. [8] Taghvaei H., Taghvaei H., Jafarpur K., Estahbanati M.R.K., Feilizadeh M., Feilizadeh M. and Ardekani A.S., A thorough investigation of the effects of water depth on the performance of active solar stills. Desalination, Vol. 347, pp. 77–85, 2014. [9] Gomkale S.D. and Datta R.L., Some Aspects of Solar Distillation for Water Purification. Solar Energy, Vol. 14, pp. 387–92, 1973. [10] Garg H.P. and Mann H., Effect of Climatic, Operations and Design Parameters on the Year Round Performance of Single Sloped and Double Sloped Solar Stills Under India Arid Zone Conditions. Solar Energy, Vol. 18, pp. 159–64, 1976. [11] Zakharchenko R., Licea-Jime nez L., Perez-Garci S.A., Vorobiev P., Dehesa-Carrasco U., Perez-Robels J.F. and et al., Photovoltaic Solar Panel for A Hybrid PV/Thermal System. Solar Energy Materiasl and Solar Cells, Vol. 82, pp. 253–61, 2004. [12] Tiwari G., Shukla S. and Singh I., Computer modeling of passive/active solar stills by using inner glass temperature. Desalination, Vol. 154, pp. 171-185, 2003. [13] Kumar S. and Tiwari A., Design, fabrication and performance of a hybrid photovoltaic/thermal (PV/T) active solar still. Energy Conversion and Management, Vol. 51, pp. 1219–1229, 2010. [!4] He W., Chow T.T., Ji J., Lu J.P., Pei G. and Chan L., Hybrid Photovoltaic and Thermal Solar Collector Designed for Natural Circulation of Water. Applied Energy, Vol. 83, pp. 199–210, 2006. [15] Wolf M., Performance analyses of combined heating and photovoltaic power systems for residences. Energy Conversion and Management, Vol. 16, pp. 79–90, 1976. [16] Raghuraman P., Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance. Journal of Solar Energy Engineering, Vol. 103, pp. 291–8, 1981. [17] Bergene T. and Lovvik M., Model calculations on a flat-plat solar heat collector with integrated solar cells. Solar Energy, Vol. 55, pp. 453–62, 1995. [18] Sandnes B. and Rekstad J., A photovoltaic/thermal (PV/T) collector with a polymer absorber plate, Experimental study and analytical model. Solar Energy, Vol. 72, pp. 63–73, 2002. [19] Kalogirou S.A. and Tripanagnostopoulos Y., Hybrid PV/T solar systems for domestic hot water and electricity production. Energy Conversion and Management, Vol. 47, pp. 3368–82, 2006. [20] Mohsenzadeh M. and Hosseini R., A photovoltaic/thermal system with a combination of a booster diffuse reflector and vacuum tube for generation of electricity and hot water production. Renewable Energy, Vol. 78, pp. 245-252, 2015. [21] Moradgholi M. and et al., Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Solar Energy, Vol. 107, pp. 82-88, 2014. [22] Tang X., hua Quan Z. and hua Zhao Y., Notice of Retraction Experimental Investigation of Solar Panel Cooling by a Novel Micro Heat Pipe Array. In Power and Energy Engineering Conference (APPEEC), Asia-Pacific, pp. 1-4, 2010. [23] Gang P., Huide F., Tao Zh. and Jie J., A Numerical and Experimental Study on A Heat Pipe PV/T System. Solar Energy, Vol. 85, pp. 911–21, 2011. [24] Guo C., Jie J., Sun W., Ma J., He W. and Wang Y., Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector. Energy, Vol. 87, pp. 470-80 , 2015. [25] Jahangiri Mamouri S., Gholami H., Ghiasi M., Shafii M.B. and Shiee Z., Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy, Vol. 75, pp. 501-507, 2014. [26] Gang P., Huide F., Jie J., Tin-tai Ch. and Tao Zh., Annual Analysis of Heat Pipe PV/T Systems for Domestic Hot Water and Electricity Production, Energy Conversion and Management, Vol. 56, pp. 8–21, 2012. [27] Al-Karaghouli A.A. and Alnaser W.E., Experimental comparative study of the performances of single and double basin solar-stills. Applied Energy, Vol. 77, pp. 317–325, 2004. [28] Tiwari G.N., Singh S.K. and Bhatnagra V.P., Analytical thermal modeling of multi-basin solar still. Energy Conversion and Management, Vol. 34, No. 12, pp. 1261–1266, 1993. [29] El-Sebaii A.A., Thermal performance of a triple -basin solar still. Desalination, Vol. 174, pp. 23–37, 2005. [30] Dhiman N.K., Transient analysis of a spherical solar still. Desalination, Vol. 69, pp. 47–55, 1988. [31] Ismail B.I., Design and performance of a transportable hemispherical solar still. Renewable Energy, Vol. 34, pp. 145–150, 2009. [32] Rubio-Cerda E., Porta-Gandara M.A. and Fernandez Zayas J.L., Thermal performance of the condensing covers in a triangular solar still. Renewable Energy, Vol. 27, pp. 301–308, 2002. [33] Teo H.G., Lee P.S. and Hawlader M.N.A., An active cooling system for photovoltaic modules. Applied Energy, Vol. 90, pp. 309–315, 2012. [34] Narayan G.P., Sharqawy M.H., Lienhard J.H. and Zubair S.M., Thermodynamic analysis of humidification dehumidification desalination cycles. Desalination and Water Treatment, Vol. 16, pp. 339–353, 2010. [35] Cuce E. and Cuce P.M., Improving thermodynamic performance parameters of silicon photovoltaic cells via air cooling. International Journa ofl Ambient Energy, Vol. 35, pp. 193–199, 2013. [36] Singh A., Tiwari G., Sharma P. and Khan E., Optimization of orientation for higher yield of solar still for a given location. Energy Conversion and Management, Vol. 36, pp. 175-181, 1995. [37] Saloux E., Teyssedou A. and Sorin M., Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar Energy, Vol. 85, pp. 713-722, 2011. [38] Batzner D.L., Romeo A., Zogg H. and Tiwari A.N., CdTe/CdS solar cell performance under low irradiance. In Solar Energy Conference, Munich, Germany, October 22–26, VB1.40, 2001. [39] Eikelboom J.A. and Reinders A.H.M.E., Determination of the irradiation dependent efficiency of multicrystalline Si PV modules on basis of IV curve fitting and its influence on the annual performance. In 14-th European PV Solar Energy Conference, Barcelona, Spain, June 30–July 4, pp. 293–296, 1997. [40] Celik A.N. and Acikgoz N., Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Applied Energy, Vol. 84, pp. 1-15, 2007. [41] Villalva M.G., Gazoli J.R. and Filho E.R., Comprehensive approach to modeling and simulation of photovoltaic arrays. In IEEE Transactions on Power Electronics, Vol. 24, pp. 1198–1208, 2009. [42] Carrero C., Amador J. and Arnaltes S., A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances. Renewable Energy, Vol. 32, pp. 2579–2589, 2007. [43] Etienne S., Teyssedou A. and Sorin M., Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar energy, Vol. 85, No. 5, pp. 713-722, 2011. [44] Kalogirou S.A., Solar energy engineering: processes and systems, Academic Press, 2013. [45] Holman J.P., Heat transfer, 10th ed. ISBN 978–0–07–352936–3. [46] Gang P. and et al., Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production. Energy Conversion and Management, Vol. 56, pp. 8-21, 2012. [47] Elango C., Gunasekaran N. and Sampathkumar K., Thermal models of solar still - A comprehensive review. Renewable and Sustainable Energy Reviews, Vol. 47, pp. 856-911, 2015. [48] Hooshmand P., Shafii M.B. and Roshandel R., An experimental study of a solar hybrid system to produce freshwater from waste heat of photovoltaic module by using thermosyphon heat pipes. Energy Conversion and Management, Vol. 158, pp. 9–22, 2018. [49] Jafari D., Franco A., Filippeschi S. and Marco P., Two-phase closed thermosyphons: A review of studies and solar applications. Renewable and Sustainable Energy Reviews, Vol. 53, pp. 575–593, 2016.
| ||
آمار تعداد مشاهده مقاله: 436 تعداد دریافت فایل اصل مقاله: 276 |