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Abstract In this paper, mixed spectral method is applied to solve the fractional fourth order
partial integro-differential equations together with weak singularity. Eigenfunctions
of the fourth order self-adjoint positive-definite differential operator are used for

the discretization of spatial variable and its derivatives. Also, shifted Legendre
polynomials are applied to the discretization of time variable. Numerical results
are presented for some problems to demonstrate the usefulness and accuracy of this
approach. The method is easy to apply and produces very accurate numerical results.
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1. Introduction

New spectral solution is suggested for the fractional fourth order partial integro-
differential equations:

cDα
t U(x, t) +

∫ t

0

(t− s)−β ∂4

∂x4
U(x, s)ds = f(x, t), x ∈ (0, a), t > 0, (1.1)

subject to the boundary condition{
U(0, t) = U(a, t) = 0,

Uxx(0, t) = Uxx(a, t) = 0,
(1.2)

and the initial condition

U(x, 0) = ψ(x), (1.3)

where 0 < α and β < 1 and cDα
t is the Caputo-type fractional derivative of order α

with respect to t [5]. It can be seen that, in Eq. (1.1), the kernel function has weak
singularity [27] that it induces sharp transitions in the solutions [32]. Mathematical
modelling and simulation of real-life problems usually result in functional equations,

Received: 23 July 2017 ; Accepted: 2 March 2019.
∗ Corresponding author.

289



290 H. BAZGIR AND B. GHAZANFARI

including partial differential equations (PDEs), integral and integro-differential equa-
tions and others. However, many mathematical formulations of physical phenomena
contain integro-differential equations. The Eq. (1.1), can be found in the modeling
of heat flow in materials with memory [16], linear viscoelastic mechanics [7], and
modeling of thin beams and plates, strain gradient elasticity, and phase separation
in binary mixtures [9]. There are few studies in the literature about the numerical
solution of fractional fourth order integro-differential equations. But Xu [29, 30] used
finite element method to solve the parabolic partial integro-differential equations in
1993. Recently, Zhang et al. [31] developed Quintic B-spline collocation method for
fourth order partial integro-differential equations with a weakly singular kernel and
Sweilam [25] used variational iteration method for this problem.

There is rapidly increasing interest in the study of fractional differential equa-
tions, because recent investigations in science and engineering have indicated that
the dynamics of many systems can be described more accurately using differential
equations of non-integer order [14]. Compared with the classical integer order one,
fractional derivatives are more excellent instruments for the description of memory
and hereditary properties of various materials and processes [2], because, in the integer
order derivatives, such effects are in fact neglected. Also, the advantage of fractional
derivatives becomes apparent in modeling mechanical and electrical properties of real
materials as well as in describing the rheological properties of rocks, and in many
other fields(for details,see [5, 11, 20]). So for the foregoing reasons, we consider the
equation with fractional derivative on time variable. Numerous methods have been
devoted to the solution of various fractional problems [2] such as Adomian’s decom-
position method [17], He’s variational iteration method [12], homotopy perturbation
method [26], collocation method [21], Galerkin method [10], and others [8, 22], among
which spectral methods have a highlighted efficiency for solving fractional problems.

Spectral methods play an important role in recent studies for the numerical so-
lution of differential equations [4, 6]. These methods have shown their efficiency
and convergence in solving numerous problems [3, 4, 23]. They convert a differen-
tial equation into an algebraic one, which not only simplifies the problem, but also
accelerates the computation [4, 18]. Many authors have presented the operational
matrix of fractional differential or integration operators based on various orthogonal
functions and have applied them to solve various fractional differential equations. In
[22], Saadatmandi and Dehghan proposed an operational matrix of derivatives with
fractional order for Legendre polynomials and used it for solving fractional differential
equation. In [8], Doha et al. applied Chebyshev spectral method for solving fractional
differential equations. Also, enthusiastic readers can refer to Wu [28] and Kilicman
[15].

In this article, first, eigenfunctions of the fourth order self-adjoint positive-definite
differential operator [24] are used for the discretization of spatial variable and re-
duction of the problem to a system of integro-differential equation; then, Legendre
collocation method is applied to solve this system. It is notable that we use roots of
Legendre polynomial for collocation points. The swell trait of this approach is in its
flexibility and ability for the problems with high dimensions.
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This paper is organized as follows. In sections 2, some basic concepts are reviewed.
In section 3, the method is implemented shown. In section 4, some numerical results
are reported to show how this technique works efficiently. The final section presents
the conclusion.

2. Preliminaries

In this section, some notations, definitions, and preliminary facts are presented
that will be used further in this work.

2.1. Caputo fractional derivative.

Definition 2.1. Caputo fractional order derivative [5] is defined as:

cDα
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, n− 1 < α ≤ n, n ∈ N, (2.1)

where α > 0 is the order of derivative and n is the smallest integer of greater than or
equal to α.

For the Caputo derivative, we have [5]:

cDα
t C = 0, where C is constant (2.2)

and

cDα
t t

β =

{
0, for β ∈ N0 and β < ⌈α⌉,
Γ(β+1)

Γ(β+1−α) t
β−α, for β ∈ N0 and β ≥ ⌈α⌉ or β /∈ N and β > ⌊α⌋.

(2.3)

The ceiling function ⌈α⌉ is used to denote the smallest integer greater than or equal
to α and the floor function ⌊α⌋ to denote the largest integer less than or equal to
α. Also, N = {1, 2, ...} and N0 = {0, 1, 2, ...}. Recall that, for α ∈ N, the Caputo
differential operator coincides with the usual differential operator of an integer order.
The Caputo fractional differentiation is a linear operation

cDα
t (λf(t) + µg(t)) = λcDα

t f(t) + µcDα
t g(t), (2.4)

where λ and µ are constant.

2.2. Shifted Legendre polynomials and its operational matrix. Let I = [−1, 1],
and Lk(x) be the Legendre polynomial [1] with degree k,

Lk(x) =
1

2n

k∑
i=0

(
k

i

)2

(x− 1)k−i(x+ 1)i, k = 0, 1, . . . . (2.5)

They can be also determined by the aid of the following recurrence formula:

Lk+1(x) =
(2k + 1)

k + 1
xLk(x)−

k

k + 1
Lk−1(x), k = 1, 2, . . . , (2.6)

where L0(x) = 1, and L1(x) = x. We use these polynomials on the interval x ∈
[0, tf ]; so, we define the so-called shifted Legendre polynomials (SL polynomials) by
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introducing the change of variable x = 2t
tf

− 1. Let SL polynomials Li(
2t
tf

− 1) be

denoted by Ltf ,i(t) and satisfy the orthogonality relation∫ tf

0

Ltf ,i(t)Ltf ,j(t)dt =

{
0, for i ̸= j,
tf

2j+1 , for i = j.
(2.7)

They may be obtained as follows:

Ltf ,k(t) =

k∑
i=0

c
(k)
i ti, k = 0, 1, 2, . . . . (2.8)

where c
(k)
i = (−1)k−i

(
k+i
i

)(
k

k−i

)
t−i
f .

In the single domain, a function f(t), square integrable in [0, tf ], can be expressed
in terms of SL polynomials as

f(t) =

∞∑
j=0

cjLtf ,j(t), (2.9)

where the coefficients cj are obtained from

cj =
2j + 1

tf

∫ tf

0

f(t)Ltf ,j(t)dt, j = 0, 1, 2, . . . . (2.10)

Actually, in numerical methods, only the first (N+1)-terms of SL polynomials are
considered. So we have:

fN (t) ≃
N∑
j=0

cjLtf ,j(t). (2.11)

Now, the following lemma can be presented an upper bound for estimating the error.

Lemma 2.2. Let the function f : [t0, tf ] → R is (N + 1) times continuously dif-

ferentiable and PN+1 = Span{Ltf ,0(t), Ltf ,1(t), . . . , Ltf ,N (t)}, than we can calculate
following upper bound for approximation fN (t),

∥f(t)− fN (t)∥2,tf ≤
√
tfMCN+1

(N + 1)!
, (2.12)

where M = maxt∈[t0,tf ] f
(N+1)(t) and C = max{tf − t0, t0}.

Proof. Similar to proof of [11, Theorem 2.1.8]. �

We set ϕ(t) = [Ltf ,0(t), Ltf ,1(t), . . . , Ltf ,N (t)]T . then, the derivative of vector ϕ(t)
can be expressed by:

d

dt
ϕ(t) = D(1)ϕ(t), (2.13)
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where D(1) is the (N + 1) × (N + 1) operational matrix of the derivative and given
by:

{D(1)}i,j =


2
tf
(2j + 1), for j = i− s,

{
s = 1, 3, ..., n, if N is odd,

s = 1, 3, ..., N − 1, if N is even,

0, otherwise.

For example, if N = 4 then we have

D(1) =
2

tf


0 0 0 0 0
1 0 0 0 0
0 3 0 0 0
1 0 5 0 0
0 3 0 7 0

 .

Caputo fractional differential operator of order α > 0 of the vector ϕ(t) can be
expressed by

cDα
t ϕ(t) ≃ cD(α)ϕ(t), (2.14)

where cD(α) is the (N + 1) × (N + 1) SL operational matrix of Caputo fractional
differential operator of order α.

Theorem 2.3. Let cD(α) is the (N + 1)× (N + 1) SL operational matrix of Caputo
fractional differential operator of order α then the elements of this matrix are obtained
as:

{ cD(α)}Ni,j=0 ={
0, if i = 0, 1, . . . , ⌈α⌉ − 1,∑i

k=⌈α⌉
∑j

l=0 c
(i)
k c

(j)
l

(2j+1)Γ(k+1)tl+k−α
f

Γ(k+1−α)(l+k−α+1) , if ⌈α⌉ ≤ i ≤ N.
(2.15)

Proof. The proof is similar to [22, Theorem (1)]. �

3. Application of the scheme

In this section, the scheme is illustrated. First, by means of eigenfuntions tech-
nique [24], equations (1.1)-(1.3) are transformed into a system of integro-differential
equations with initial condition (1.3).

Let

L =
∂4

∂x4
, (3.1)

be defined on the domain D(A) = {w ∈ H4|w satisfies (1.2)} where H = L2([0, a])
and w ∈ H4 means that w and its derivatives up to order 4 are elements of H. The
operator L is self-adjoint compact and positive on D(A), which leads to a countable
infinite set of positive real eigenvalues {λm = (mπ

a )4} and corresponds to the set of

orthonormal eigenfunctions {ϕm(x) =
√

2
a sin(mπ

a )x}.
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Equations (1.1) can be transformed by expanding the function U(x, t) and f(x, t) in
terms of the finite eigenfunctions {ϕm(x)}Mm=0 of the operator L {Eq. (3.1)},

U(x, t) =
M∑

m=1

um(t)ϕm(x) = U⃗T(t)Φ(x), (3.2)

f(x, t) =
M∑

m=1

< f, ϕm > ϕm(x) = F⃗T(t)Φ(x), (3.3)

where

U⃗T(t) = [u1(t), u2(t), . . . , uM (t)], (3.4)

ΦT(x) = [ϕ1(x), ϕ2(x), . . . , ϕm(x)], (3.5)

F⃗T(t) = [< f, ϕ1 >,< f, ϕ2 >, . . . , < f, ϕM >], (3.6)

which < f(x, t), ϕm(x) >=
∫ a

0
f(x, t)ϕm(x)dx and T stands for a vector transpose.

Substituting (3.2) and (3.3) in Eq. (1.1) gives:

cDα
t U⃗

T(t)Φ(x) +

∫ t

0

(t− s)−β ∂4

∂x4
U⃗T(s)Φ(x)ds = F⃗T(t)Φ(x), (3.7)

⇒ cDα
t U⃗

T(t)Φ(x) +

∫ t

0

(t− s)−βU⃗T(s)ΛMΦ(x)ds = F⃗T(t)Φ(x), (3.8)

which ΛM is a M ×M diagonal matrix that is obtained from eigenfunction definition

with the corresponding eigenvalues of ∂4

∂x4 on its diagonal; i.e.

ΛM = diag [λm = (
mπ

a
)4], m = 1, 2, . . . ,M.

Taking the dot product of resulting expression (3.8) by Φ(x), and integrating with
respect to x over [0, a], result in:

Dα
c U⃗

T(t) +

∫ t

0

(t− s)−βU⃗T(s)dsΛM = F⃗T(t). (3.9)

For appropriate initial condition, the initial condition (1.3) can be transformed in a
similar process. To this end, substituting (3.2) in (1.3) and expanding ψ(x) by the
same eigenfunctions lead to:

M∑
m=0

um(0)ϕm(x) =
M∑

m=0

< ψ(x), ϕm(x) > ϕm(x), (3.10)

or in the vector form:

U⃗T(0)Φ(x) = Ψ⃗T.Φ(x), (3.11)

which Ψ⃗T = [< ψ(x), ϕ1(x) >,< ψ(x), ϕ2(x) >, . . . , < ψ(x), ϕM (x) >]. Taking the
dot product of resulting expression (3.11) by Φ(x) and integrating with respect to x
over [0, a] provide

U⃗(0) = Ψ⃗. (3.12)
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As the second stage of our scheme, we solve the new fractional integro-differential
equations (3.9), (3.12) via SL polynomials collocation methods. Suppose that the
solution is needed on interval [0, tf ] and

U⃗(t) = A.L⃗(t), (3.13)

where A = [Aij ]M×(N+1) is the unknown coefficient matrix and

L⃗(t) = [Ltf ,0(t), Ltf ,1(t), . . . , Ltf,N (t)]T,

is vector of SL polynomials. By transposing expression (3.9) and substituting (3.13)
in it, we get:

cDα
t A.L⃗(t) + ΛM .

∫ t

0

(t− s)−βA.L⃗(s)ds = F⃗ (t) (3.14)

⇒ A cD(α)L⃗(t) + λA

∫ t

0

(t− s)−βL⃗(s)ds = F⃗ (t), (3.15)

which cD(α) is the operational matrix of fractional derivative of SL polynomials ob-
tained in Theorem 2.3. Also, by substituting (3.13) in Eq. (3.12), we get:

A.L⃗(0) = Ψ⃗, (3.16)

which makes M equations. Paying attention to the point that M(N + 1) unknowns
exist and M equations are obtained from initial conditions (3.16), so we need MN
equation. To find the required equations, we collocate Eqs. (3.15) at N points. For
suitable collocation point, we use the roots of SL polynomial Ltf,N . These equations
together with Eqs. (3.16) generate M(N + 1) linear equations which can be solved
using various known methods. Consequently, U(x, t) given in Eq. (1.1) can be ap-
proximated.

Note: We use Gaussian numerical integration in Eq. 3.15 to solve singularity.

4. Illustrative examples

In order to illustrate the method and demonstrate its simplicity, efficiency, and
accuracy, some numerical examples are presented. The numerical algorithms are
programmed in Maple.

4.1. Example. As the first example, consider Eqs. (1.1)-(1.3) for β = 1/2, x ∈ [0, 2],
tf = 1 and the exact solution

U(x, t) = x3(x− 2)3t2.

In Table 1–3 and 4, absolute errors of |U(x, t)−UM,N (x, t)| are shown for N = 4,M =
20, and α = 1

2 ,
3
4 ,

8
9 and 1, respectively, from which interesting information could be

extracted. It can be observed that, if α approach to 1, then absolute errors become
much smaller and the greatest errors are usually relevant to x = 1, namely the middle
point of interval [0, 2] and also absolute errors are symmetric with respect to x = 1.
In Figure 1, the absolute error of the solution at t = 1 for M = 20, N = 4 and α = 1

2
on interval [0, 2] is plotted, which shows the accuracy of the method. In Figure 2,
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Table 1. Absolute errors at α = 1
2 and M = 20, N = 4 for Example 4.1.

points x=0.25 x=0.5 x=0.75 x=1 x=1.25 x=1.5 x=1.75

t=0.5 0.00009 0.00016 0.00021 0.00023 0.00021 0.00016 0.00009

t=0.75 0.0001 0.00021 0.00027 0.00029 0.00027 0.00021 0.0001
t=1 0.0002 0.0004 0.00064 0.00072 0.00064 0.0004 0.0002

Table 2. Absolute errors at α = 3
4 and M = 20, N = 4 for Example 4.1.

points x=0.25 x=0.5 x=0.75 x=1 x=1.25 x=1.5 x=1.75

t=0.5 0.0001 0.00018 0.00024 0.00026 0.00024 0.00018 0.0001
t=0.75 0.00006 0.00013 0.00017 0.00018 0.00017 0.00013 0.00006
t=1 0.00008 0.00014 0.00023 0.00027 0.00023 0.00014 0.00008

Table 3. Absolute errors at α = 8
9 and M = 20, N = 4 for Example 4.1.

points x=0.25 x=0.5 x=0.75 x=1 x=1.25 x=1.5 x=1.75

t=0.5 0.00006 0.0001 0.00014 0.00015 0.00014 0.0001 0.00006
t=0.75 0.000012 0.000043 0.000052 0.000053 0.000052 0.000043 0.000012
t=1 0.000009 0.000001 0.000033 0.000053 0.000033 0.000001 0.000009

Table 4. Absolute errors at α = 1 and M = 20, N = 4 for Example 4.1.

points x=0.25 x=0.5 x=1 x=1.5 x=1.75

t=0.5 2.3× 10−6 3× 10−6 2.2× 10−6 3× 10−6 2.3× 10−6

t=0.75 5.3× 10−6 6.7× 10−6 5× 10−6 6.7× 10−6 5.3× 10−6

t=1 9× 10−6 1.2× 10−5 9× 10−6 1.2× 10−5 9× 10−6

both exact and approximated solutions are plotted for α = 1 at t = 1, in which the
efficiency and accuracy of our scheme could be easily observed.

4.2. Example. Consider the problem Eqs. (1.1)-(1.3) for α = 1
3 , β = 1

3 , x ∈ [0, 1],
tf = 1 and the exact solution

U(x, t) = t2 sin(πx).

The absolute errors of |U(x, 1)−UM,N (x, 1)| forM = 20, N = 9 are illustrated in Table
5 and plotted in Figure 3, as the evidence for simplicity and accuracy of the method.
Also, the comparison plot of exact solution and various approximated solutions for
different M, N at t = 1, namely U(x, 1), UM,N (x, 1), is indicated in Figure 4 and
represents the convergence of the scheme.

4.3. Example. For the last example, the problem Eqs. (1.1)-(1.3) for α = 2
3 , β = 1

3 ,
x ∈ [0, 2], tf = 1 and the exact solution

U(x, t) = t cos(
π

2
(x− 1)),

are solved. In Table 6, absolute errors of |U(x, 1)−UM,N (x, 1)| forM = 50, N = 7 are
presented and plotted in Figure 5, which shows the existence of good approximation
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Figure 1. Absolute errors of the solution at t = 1 forM = 20, N = 4
and α = 1

2 on interval [0, 2] for Example 4.1.

Figure 2. Comparison of exact solution and approximated solution
for α = 1 at t = 1 for Example 4.1.

Figure 3. Absolute errors of the solution at t = 1 forM = 20, N = 4
and α = 1

3 on interval [0, 1] for Example 4.2.



298 H. BAZGIR AND B. GHAZANFARI

Figure 4. Comparison plot of u(x,1) and some obtained solutions
from the scheme at t = 1, namely UM,N (x, 1), for α = 1

3 on interval
[0.45, 0.55] for Example 4.2.

Figure 5. Absolute errors of the solution at t = 1 forM = 50, N = 4
and α = 2

3 on interval [0, 2] for Example 4.3.

Table 5. Absolute errors of the solution at α = 1
3 and M =

20, N = 9 for Example 4.2.

points x=0.1 x=0.3 x=0.5 x=0.7 x=0.9

t=0.25 1× 10−6 4× 10−6 5× 10−6 4× 10−6 1× 10−6

t=0.5 2× 10−6 6× 10−6 8× 10−6 6× 10−6 2× 10−6

t=0.75 1× 10−6 4× 10−6 6× 10−6 4× 10−6 1× 10−6

t=1 3× 10−5 1× 10−4 1.2× 10−4 1× 10−4 3× 10−5

for the problem. Comparison of exact solution and obtained solution is portrayed in
Figure 6.
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Figure 6. Comparison plot of u(x,1) and U50,4(x, 1) at α = 2
3 on

interval [0.75, 1.25] for Example 4.3.

Table 6. Absolute errors of solution at α = 2
3 and M = 50, N = 7

at tf = 1 for Example 4.3.

points x=0.25 x=0.5 x=0.75 x=1 x=1.25 1.5 1.75

t=0.25 0.00036 0.00067 0.00087 0.00094 0.00087 0.00067 0.00036
t=0.5 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002
t=0.75 0.00006 0.00012 0.00015 0.00017 0.00015 0.00012 0.00006
t=1 0.00017 0.00033 0.00043 0.00046 0.00043 0.00033 0.00017

5. Conclusions

A combined spectral method has been presented here to solve Eq. (1.1) numerically.
The method uses a combination of a fourth order self-adjoint operator of a fractional
order of eigenfunctions and shifted Legendre polynomials. This method showed to be
convergent and also the solutions obtained from this method are well approximating
the exact solutions and also giving the exact ones for some problems. Moreover, It is
easy to apply this method in practice.
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