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Abstract In this paper, we study linear fractional fuzzy differential equations involving the
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1. Introduction

The differential equations involving fractional derivative operators, appear to be
important in modelling of several complex phenomena in different fields of science and
engineering, for instance in electrical circuits, biology, biomechanics, electrochemistry,
control and electromagnetic processes [1, 18]. There are several approaches to define
the derivative and integral of fractional order. For example, the Grünwald-Letnikov
definition of derivative and integral starts from classical definitions of derivatives and
integrals based on infinitesimal division and limit. The disadvantages of this approach
are its technical difficulty of the computations and the proofs and large restrictions on
functions. Fortunately, there are others, more elegant approaches like the Riemann–
Liouville definition which includes the results of the previous one as a special case.
It turns out that the Riemann–Liouville derivatives have certain disadvantages when
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trying to model real-world phenomena with fractional differential equations [18]. In
this paper, we focus on the Caputo definition for the fractional derivative.
Recently, Agarwal et al. [2] have proposed a concept of solution for fractional dif-
ferential equations with uncertainty. They combined the notion of fractional with
uncertainty. They have considered the Riemann-Liouville differentiability concept
based on the Hukuhara differentiability. In [4], the authors presented the global solu-
tions for nonlinear fuzzy fractional integral and integrodifferential equations. In [3],
Agarwal et al. presented a Schauder fixed point theorem in semilinear spaces and its
application to fuzzy fractional differential equations (FFDEs). Using this theorem,
the authors in [16] have presented an existence result for a class of FFDEs. In [5], the
authors have extended the definition of generalized Hukuhara differentiability to the
fractional case. In [24], the concept of Caputo Hukuhara differentiability was applied
to solve the fractional differential equations with uncertainty.
The Laplace transform is a very useful tool for solving linear ordinary differential
equations with constant coefficients, since it converts linear differential equations to
linear algebraic equations which can be solved easily [12]. The final step, the in-
verse transform of the result, is usually the most complicated part of this approach.
The situation with linear fractional differential equations with constant coefficients is
completely analogous [18]. In [7], the authors introduced the fuzzy Laplace transform
and applied it to solve some fuzzy differential equations. Later, several authors used
the fuzzy Laplace transform to solve fuzzy differential equations and fuzzy fractional
differential equations (see [24] and the references therein).

In this paper, we study the linear fuzzy fractional differential equations under
Caputo sense and present the explicit solutions of this problem in the general case.
The paper is organized as follows. In section 2, we recall some basic knowledge of
fuzzy calculus, fractional calculus and fuzzy Laplace transform. In section 3, we
present main results of this paper and in section 4 some examples are given.

2. Preliminaries

In this section, we give some definitions and introduce the necessary notations
which will be used throughout the paper, see, for example, [10].

Definition 2.1. A fuzzy number is a fuzzy set such as u : R −→ [0, 1], satisfying the
following properties:
(i) u is normal, that is, there exists an x0 ∈ R such that u(x0) = 1,
(ii) u is a fuzzy convex set, i.e. u((1− λ)x+ λy) ≥ min{u(x), u(y)}, ∀x, y ∈ R, λ ∈
[0, 1],
(iii) u is upper semi-continuous,
(iv) [u]0 = cl{x ∈ R;u(x) > 0} is compact.

The set of all fuzzy numbers is denoted by RF . Given a fuzzy number u ∈ and
0 < r ≤ 1, we obtain the r-level set of u by [u]r = {s ∈ R | u(s) ≥ r} and the support
of u as [u]0 = cl{s ∈ R |u(s) > 0}. For any r ∈ [0, 1], due to the properties imposed on
the set of fuzzy numbers, we have that [u]r is a bounded closed interval. The notation
[u]r = [ur, ur], denotes explicitly the r-level set of u.
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For given u, v ∈ and λ ∈ R, we define the sum u + v and the product λu by the
standard level-set operations [u + v]r = [u]r + [v]r, [λu]r = λ[u]r,∀r ∈ [0, 1], where
[u]r + [v]r means the usual addition of two intervals (subsets) of R and λ[u]r means
the usual product between a scalar and a subset of R. The metric structure is given
by the Hausdorff distance D : × → R+ ∪ {0},

D[u, v] = sup
r∈[0,1]

max{|ur − vr|, |ur − vr|}, ∀u, v ∈ .

Remark 2.2. The following properties are well-known [11]

(1) (, D) is a complete metric space.
(2) D[u+ w, v + w] = D[u, v], ∀u, v, w ∈ RF ,
(3) D[ku, kv] = |k|D[u, v], ∀k ∈ R,
(4) D[u+ v, w + e] ≤ D[u,w] +D[v, e], ∀u, v, w, e ∈ RF ,

Definition 2.3. ([11]) Let u, υ ∈ RF . If there exist w ∈ RF such that u = υ + w,
then w is called the Hukuhara difference of u and υ, and it is denoted by u	 υ.
Definition 2.4. ([17]) Let F : (a, b) −→ RF be a fuzzy-valued function. For fix
t0 ∈ (a, b), we say that F is generalized Hukuhara differentiable at t0, if there exists
an element F ′(t0) ∈ RF such that either

(1) for all h > 0 sufficiently close to 0, the H-differences F (t0 + h) 	 F (t0), F (t0) 	
F (t0 − h) exist and the limits (in the metric D)

lim
h→0+

F (t0 + h)	 F (t0)

h
= lim
h→0+

F (t0)	 F (t0 − h)

h
= F ′(t0)

or

(2) for all h > 0 sufficiently close to 0, the H-differences F (t0) 	 F (t0 + h), F (t0 −
h)	 F (t0) exist and the limits (in the metric D)

lim
h→0+

F (t0)	 F (t0 + h)

−h
= lim
h→0+

F (t0 − h)	 F (t0)

−h
= F ′(t0).

Remark 2.5. In the previous definition, case (1) corresponds to the H-derivative
introduced in [23], so this differentiability concept is a generalization of the Hukuhara
derivative.

Definition 2.6. Let F : (a, b) −→ RF . We say that F is (1)-differentiable on (a, b) if
F is differentiable in the sense (1) of Definition 2.4, and similarly for (2)-differentiable
on (a, b).

Theorem 2.7. ([17]) Let F : (a, b) −→ RF and put [F (t)]r = [F (t; r), F (t; r)] for
each r ∈ [0, 1].

(i) If F is (1)-differentiable, then F and F are differentiable functions and [F ′(t)]r =

[F ′(t; r), F
′
(t; r)].

(ii) If F is (2)-differentiable, then F and F are differentiable functions and [F ′(t)]r =

[F
′
(t; r), F ′(t; r)].
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Let T ⊂ R be an interval. We denote by C(T,RF ) the space of all continuous
fuzzy functions on T . Also, we denote by L1(T,RF ) the space of all fuzzy functions
f : T −→ RF which are Lebesgue integrable on the bounded interval T of R.

Theorem 2.8. ([26]) Let f(t) be a fuzzy-valued function on [a,∞), and it is repre-
sented by(

f(t; r), f(t; r)
)
.

For any fixed r ∈ [0, 1], assume f(t; r) and f(t; r) are Riemann-integrable on [a, b] for

every b ≥ a, and assume that there are two positive functions M(r) and M(r), such

that
∫ b
a
|f(t; r)|dt ≤ M(r) and

∫ b
a
|f(t; r)|dt ≤ M(r) for every b ≥ a; then, f(t) is

improper fuzzy Riemann-integrable on [a,∞). The improper fuzzy Riemann-integral
is a fuzzy number, and we have:∫ ∞

a

f(t; r)dt =

[ ∫ ∞
a

f(t; r)dt,

∫ ∞
a

f(t; r)dt

]
. (2.1)

Definition 2.9. ([16]) Let u ∈ C((0, a],RF ) ∩ L1((0, a),RF ). The fuzzy fractional
integral of order q > 0 of u, is defined as

Iqu(t) =
1

Γ(q)

∫ t

0

(t− s)q−1u(s) ds, t ∈ (0, a), (2.2)

provided the integral in the right-hand side is defined for a.e. t ∈ (0, a).

Definition 2.10. Let f : [0, a] −→ RF be a generalized Hukuhara differentiable
function and

f ′ ∈ C
(
(0, a],RF

)⋂
L1
(
(0, a),RF

)
.

The Caputo fractional H-derivative of fuzzy-valued function f is defined as

(CDqf)(t) =
1

Γ(1− q)

∫ t

0

f ′(s)

(t− s)q
ds, (2.3)

where 0 < q < 1.

Definition 2.11. ([24]) Let f : [0, a] −→ RF be a generalized Hukuhara differ-
entiable function and f ′ ∈ C

(
(0, a],RF

)⋂
L1
(
(0, a),RF

)
. We say that f is C [1 −

q]−differentiable if
(
CDqf

)
(t; r) =

[(
CDqf

)
(t; r),

(
CDqf

)
(t; r)

]
and is C [2−q]−differentiable

if (
CDqf

)
(t; r) =

[(
CDqf

)
(t; r),

(
CDqf

)
(t; r)

]
.

Theorem 2.12. Let f : [0, a] −→ RF be generalized differentiable and

f ′ ∈ C
(
(0, a],RF

)⋂
L1
(
(0, a),RF

)
.

Then,
(i) f is [1-q]-differentiable at t0 iff f is C [1− q]−differentiable at t0.
(ii) f is [2-q]-differentiable at t0 iff f is C [2− q]−differentiable at t0.
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Proof. (i) Let f be [1-q]-differentiable at t0. Then we have[
(CDqf)(t0)

]α
=
[
I1−qf ′(t0)

]α
=
[
I1−q(f

α
)′(t0), I1−q(fα)′(t0)

]
=
[
(CDqf

α
)(t0), (CDqfα)(t0)

]
that is, f is C [1 − q]−differentiable at t0. Conversely, if f be C [1 − q]−differentiable
at t0, then[

Iq−1(CDqf(t0))
]α

=
[
Iq−1(CDqf

α
)(t0), Iq−1(CDqfα)(t0)

]
=

[
Iq−1(I1−q(f

α
)′(t0)), Iq−1(I1−q(fα)′(t0))

]
=

[
(f
α

)′(t0), (fα)′(t0)
]
,

by Definition 2.10. On the other hand,[
Iq−1(CDqf(t0))

]α
=
[
f ′(t0)

]α
,

so, f is [1-q]-differentiable at t0.
(ii) Let f be [2-q]-differentiable at t0. Then we have[

(CDqf)(t0)
]α

=
[
I1−qf ′(t0)

]α
=

[
I1−q(fα)′(t0), I1−q(f

α
)′(t0)

]
=

[
(CDqfα)(t0), (CDqf

α
)(t0)

]
,

that is, f is C [2 − q]−differentiable at t0. Conversely, if f be C [2 − q]−differentiable
at t0, then[

Iq−1(CDqf(t0))
]α

=
[
Iq−1(CDqfα)(t0), Iq−1(CDqf

α
)(t0)

]
=

[
Iq−1(I1−q(fα)′(t0)), Iq−1(I1−q(f

α
)′(t0))

]
=

[
(fα)′(t0), (f

α
)′(t0)

]
,

by Definition 2.10, that is, f is [2− q]−differentiable at t0. �

Definition 2.13. ([24]) Let f(t) be a continuous fuzzy-valued function. Suppose that
f(t)e−pt is improper fuzzy Riemann-integrable on [0,∞). Then

∫∞
0
f(t)e−ptdt is the

fuzzy Laplace transform and can be denoted as

L{f(t)} =

∫ ∞
0

f(t)e−ptdt, (p > 0 and integer). (2.4)

From Theorem 2.8, it is easy to see that for all r ∈ [0, 1], we have∫ ∞
0

f(t; r)e−ptdt =

[ ∫ ∞
0

f(t; r)e−ptdt,

∫ ∞
0

f(t; r)e−ptdt

]
.

By virtue of the definition of the classical Laplace transform, one can obtain easily

`{f(t; r)} =

∫ ∞
0

f(t; r)e−ptdt, `{f(t; r)} =

∫ ∞
0

f(t; r)e−ptdt.

Therefore, we conclude that

L{f(t; r)} =

[
`{f(t; r)}, `{f(t; r)}

]
.
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Theorem 2.14. ([24]) Let f(t), g(t) be continuous fuzzy-valued functions. Suppose
that c1, c2 ∈ R are constants. Then

L
{
c1f(t) + c2g(t)

}
= c1L{f(t)}+ c2L{g(t)}.

Lemma 2.15. ([24]) Let f(t) be a continuous fuzzy-valued function on [0,∞) and
λ ∈ R. Then

L{λf(t)} = λL{f(t)}.

Theorem 2.16. ([24]) Let f(t) be a continuous fuzzy-valued function and L{f(t)} =
F (p); then

L{eatf(t)} = F (p− a),

where eat is a real-valued function.

Theorem 2.17. ([24]) Let f(t) be a continuous fuzzy-valued function on [0,∞). Then
we have

L{CDqf(t)} = sqL{f(t)} 	 f(0), (2.5)

if f is C [1− q]−differentiable and

L{CDqf(t)} = −f(0)	 (−sqL{f(t)}), (2.6)

if f is C [2− q]−differentiable.

3. Caputo Fractional Fuzzy Differential Equations

In this section, we consider the fuzzy fractional initial value problem (FFIVP){
CDqx(t) = λx(t) + b(t),
x(0) = x0 ∈ RF ,

(3.1)

where λ ∈ R and b(t) ∈ RF .
We solve FFIVP (3.1) by appling the fuzzy Laplace transform. We discuss this prob-
lem in three cases λ > 0, λ < 0 and λ = 0, and present the general form of its C [1− q]
and C [2− q] solutions.

Case I. Let λ > 0. Suppose that x(t) be C [1 − q]−differentiable. If we apply the
fuzzy Laplace transform to both sides of (3.1), using Theorem 2.17, we obtain

sqL{x(t)} 	 x(0) = λL{x(t)}+ L{b(t)}. (3.2)

So, we have

sq`{x(t)} − x(0) = λ`{x(t)}+ `{b(t)}

and

sq`{x(t)} − x(0) = λ`{x(t)}+ `{b(t)}.

Then, we deduce

`{x(t)} =
x(0) + `{b(t)}

sq − λ
.
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Now, by applying the inverse Laplace transform, we have

x(t) = x(0)`−1{ 1

sq − λ
}+ `−1

{
`{b(t)} · 1

sq − λ

}
.

By convolution theorem [12], we have

x(t) = x(0)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds,

where Eq,q(t) =
∑∞
k=0

tk

Γ(qk+q) is the classical Mittag-Leffler function. Similarly, we

obtain

x(t) = x(0)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds.

Therefore, the solution is given by

x(t) = x(0)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds. (3.3)

Let x(t) be C [2− q]−differentiable, then by Theorem 2.17 and applying the fuzzy
Laplace transform to both sides of (3.1), we have

−x(0)	 (−sqL{x(t)}) = λL{x(t)}+ L{b(t)}. (3.4)

Then

(sq`{x(t)} − x(0), sq`{x(t)} − x(0)) =
(
λ`{x(t)}+ `{b(t)}, λ`{x(t)}+ `{b(t)}

)
.

So, we get sq`{x(t)} − λ`{x(t)} = x(0) + `{b(t)},

sq`{x(t)} − λ`{x(t)} = x(0) + `{b(t)}.

Therefore, using the theory of ordinary differential equations and classic Laplace
transform [12], we obtain

`{x(t)} =
sq
[
x(0) + `{b(t)}

]
s2q − λ2

+
λ
[
x(0) + `{b(t)}

]
s2q − λ2

, (3.5)

and

`{x(t)} =
sq
[
x(0) + `{b(t)}

]
s2q − λ2

+
λ
[
x(0) + `{b(t)}

]
s2q − λ2

. (3.6)

Now, by applying the inverse Laplace transform to both sides of (3.5), we get

x(t) = `−1

{
sq
[
x(0) + `{b(t)}

]
s2q − λ2

}
+ `−1

{
λ
[
x(0) + `{b(t)}

]
s2q − λ2

}
. (3.7)
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It is easy to see that

`−1

{
sq
[
x(0) + `{b(t)}

]
s2q − λ2

}
= `−1

{
s−q
[
x(0) + `{b(t)}

][
1− s−2qλ2

]−1
}

= `−1

{
s−q
[
x(0) + `{b(t)}

] ∞∑
k=0

(s−2qλ2)k
}

= `−1

{
x(0)

∞∑
k=0

λ2ks−2qk−q
}

+ `−1

{
`{b(t)}

∞∑
k=0

λ2ks−2qk−q
}

= x(0)

∞∑
k=0

λ2k`−1
{
s−2qk−q}+ b(t) ∗

∞∑
k=0

λ2k`−1
{
s−2qk−q}

= x(0)

∞∑
k=0

λ2k t2qk+q−1

Γ(2qk + q)
+ b(t) ∗

∞∑
k=0

λ2k t2qk+q−1

Γ(2qk + q)

= x(0)tq−1E2q,q(λ
2t2q) +

∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds,

and

λ`−1

{
x(0) + `{b(t)}
s2q − λ2

}
= λ`−1

{
x(0)

s2q − λ2

}
+ λ`−1

{
`{b(t)} · 1

s2q − λ2

}
= λx(0)t2q−1E2q,2q(λ

2t2q) + λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds,

where ∗ stands for convolution operator. So, by (3.7), we have

x(t) = x(0)tq−1E2q,q(λ
2t2q) +

∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds

+ λx(0)t2q−1E2q,2q(λ
2t2q) + λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds,

and similarly,

x(t) = x(0)tq−1E2q,q(λ
2t2q) +

∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds

+ λx(0)t2q−1E2q,2q(λ
2t2q) + λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds.

So, the C [2− q]−solution is given by

x(t) = x(0)tq−1E2q,q(λ
2t2q)	−λx(0)t2q−1E2q,2q(λ

2t2q)

+ λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds

	−
∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds,

provided the H-differences exist. So, we have the following result.
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Theorem 3.1. Let λ > 0. Then
(i) the C [1− q]−solution of FFIVP (3.1) is given by

x(t) = x(0)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds,

(ii) the C [2− q]−solution of FFIVP (3.1) is given by

x(t) = x(0)tq−1E2q,q(λ
2t2q)	−λx(0)t2q−1E2q,2q(λ

2t2q)

+ λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds

	−
∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds,

provided the H-differences exist.

Case II. Let λ < 0. First, we suppose that x(t) be C [1 − q]−differentiable. By
Theorem 2.17 and applying the fuzzy Laplace transform to both sides of (3.1), we
have(

sq`{x(t)} − x(0), sq`{x(t)} − x(0)

)
=

(
λ`{x(t)}+ `{b(t)}, λ`{x(t)}+ `{b(t)}

)
.

Therefore, we have

sq`{x(t)} − λ`{x(t)} = x(0) + `{b(t)},
and

sq`{x(t)} − λ`{x(t)} = x(0) + `{b(t)}.
Then, we obtain

`{x(t)} =
sq
[
x(0) + `{b(t)}

]
s2q − λ2

+
λ
[
x(0) + `{b(t)}

]
s2q − λ2

,

and

`{x(t)} =
sq
[
x(0) + `{b(t)}

]
s2q − λ2

+
λ
[
x(0) + `{b(t)}

]
s2q − λ2

.

So, similarly to the Case I, we have

x(t) = x(0)tq−1E2q,q(λ
2t2q) +

∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds

+ λx(0)t2q−1E2q,2q(λ
2t2q) + λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds,

and

x(t) = x(0)tq−1E2q,q(λ
2t2q) +

∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds

+ λx(0)t2q−1E2q,2q(λ
2t2q) + λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds,
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So, the C [1− q]−solution of (3.1) for λ < 0 is given by

x(t) = x(0)tq−1E2q,q(λ
2t2q) + λx(0)t2q−1E2q,2q(λ

2t2q)

+

∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds

+ λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds.

Now, we suppose that x(t) is C [2− q]−differentiable. By Theorem 2.17, we have

sq`{x(t)} − λ`{x(t)} = x(0) + `{b(t)},

and

sq`{x(t)} − λ`{x(t)} = x(0) + `{b(t)},

so, similarly to the Case I, we obtain

x(t) = x(0)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds,

and

x(t) = x(0)tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds.

Therefore, the C [2− q]−solution is

x(t) = x(0)tq−1Eq,q(λt
q)	−

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds,

provided the H-difference exists. Then, we have the following result.

Theorem 3.2. Let λ < 0. Then
(i) the C [1− q]−solution of FFIVP (3.1) is given by

x(t) = x(0)tq−1E2q,q(λ
2t2q) + λx(0)t2q−1E2q,2q(λ

2t2q)

+

∫ t

0

(t− s)q−1E2q,q(λ
2(t− s)2q)b(s)ds

+ λ

∫ t

0

(t− s)2q−1E2q,2q(λ
2(t− s)2q)b(s)ds,

(ii) the C [2− q]−solution of FFIVP (3.1) is given by

x(t) = x(0)tq−1Eq,q(λt
q)	−

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)b(s)ds,

provided the H-difference exists.

Case III. Let λ ≡ 0. Then, the fractional fuzzy initial value problem (3.1) is as
follows {

CDqx(t) = b(t),
x(0) = x0 ∈ RF .

(3.8)
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Suppose that x(t) be C [1− q]−differentiable. Then, by Theorem 2.17, we have

sqL{x(t)} 	 x(0) = L{b(t)}.
So, we obtain

sq`{x(t)} − x(0) = `{b(t)},
and

sq`{x(t)} − x(0) = `{b(t)}.
Then, we have

`{x(t)} =
x(0) + `{b(t)}

sq
.

Therefore,

x(t) = x(0)`−1{ 1

sq
}+ `−1

{
`{b(t)} · 1

sq

}
.

Now, by convolution theorem for classic Laplace transform, we have

x(t) = x(0)
tq−1

Γ(q)
+

1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds,

and similarly

x(t) = x(0)
tq−1

Γ(q)
+

1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds.

So, the C [1− q]−solution is

x(t) = x(0)
tq−1

Γ(q)
+

1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds.

Let x(t) be C [2− q]−differentiable. Then, by Theorem 2.17, we have

−x(0)	 (−sqL{x(t)}) = L{b(t)}.
So, we obtain

sq`{x(t)} − x(0) = `{b(t)},
and

sq`{x(t)} − x(0) = `{b(t)}.
Then, we have

`{x(t)} =
x(0) + `{b(t)}

sq
,

so,

x(t) = x(0)`−1{ 1

sq
}+ `−1

{
`{b(t)} · 1

sq

}
.

Then, it is easy to see that

x(t) = x(0)
tq−1

Γ(q)
+

1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds,
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and similarly

x(t) = x(0)
tq−1

Γ(q)
+

1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds.

So, the C [2− q]−solution is

x(t) = x(0)
tq−1

Γ(q)
	− 1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds,

provided the H-difference exists. So, we have proved the following result.

Theorem 3.3. Let λ ≡ 0. Then
(i) the C [1− q]−solution of FFIVP (3.8) is given by

x(t) = x(0)
tq−1

Γ(q)
+

1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds,

(ii) the C [2− q]−solution of FFIVP (3.8) is given by

x(t) = x(0)
tq−1

Γ(q)
	− 1

Γ(q)

∫ t

0

(t− s)q−1b(s)ds,

provided the H-difference exists.

4. examples

In this section, we present some examples to illustrate our results.
Example 4.1. Let λ = 1, b(t) = 0̂. Then, the equation (3.1) is{

CDqx(t) = x(t),
x(0) = x0 ∈ RF .

(4.1)

So, using Theorem 3.1, the C [1− q]solution is

x(t) = x(0)tq−1Eq,q(t
q),

and the C [2− q] solution is

x(t) = x(0)tq−1E2q,q(t
2q)	−x(0)t2q−1E2q,2q(t

2q),

provided the H-difference exists.
Example 4.2. Let λ = −1, b(t) = 0̂. Then, we can write FFIVP (3.1) as{

CDqx(t) = −x(t),
x(0) = x0 ∈ RF .

(4.2)

Using Theorem 3.2, the C [1− q]−solution is given by

x(t) = x(0)tq−1E2q,q(t
2q)− x(0)t2q−1E2q,2q(t

2q),

and the C [2− q]-solution is

x(t) = x(0)tq−1Eq,q(−t2q). (4.3)
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5. Conclusion

In this paper, we have studied the solvability of linear fractional fuzzy differen-
tial equations, from the point of view of Caputo generalized differentiability. We
have obtained the explicit expressions of the solutions. The consideration of more
general derivatives in linear fractional fuzzy differential equations, such as the gH-
differentiability and g-differentiability [10] is indeed an interesting area for future
research.
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