تعداد نشریات | 43 |
تعداد شمارهها | 1,263 |
تعداد مقالات | 15,571 |
تعداد مشاهده مقاله | 51,596,230 |
تعداد دریافت فایل اصل مقاله | 14,528,025 |
طراحی گیج خلأ یونی کاتد گرم بهصورت آرایه مبتنی بر MEMS | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 29، دوره 49، شماره 1 - شماره پیاپی 87، اردیبهشت 1398، صفحه 317-329 اصل مقاله (2.22 M) | ||
نویسندگان | ||
ابراهیم عباسپورثانی* ؛ صادق محمدزاده بازارچی | ||
دانشکده مهندسی برق و کامپیوتر - دانشگاه ارومیه | ||
چکیده | ||
اندازهگیری خلأ HVو UHV تا فشار ۱۲-۱۰ تور از سال 1950 میلادی تاکنون با گیج یونی کاتد گرم موسوم به "بایارد آلپرت" انجام میگیرد. کارهای تحقیقاتی انجامشده روی گیج یونی نوع MEMS کافی نبوده و تاکنون تجاریسازی نشده است. در این مقاله انواع حسگر خلأ نوع MEMS و غیر MEMS که بتوانند خلأ HV و UHV را اندازه بگیرند، معرفی میشوند. این مقاله یک ایده گیج خلأ یونی مبتنی بر فناوری MEMS بهصورت آرایه و نیز طراحی و شبیهسازی آن را ارائه میکند. اندازه گیج یونی پیشنهادی 3×1.2mm5×1 بوده و حداقل 3000 برابر کوچکتر از نوع مرسوم (بایارد آلپرت) است. مصرف توان الکتریکی در این طرح 50 برابر کمتر از نوع مرسوم است. ساختار طرح پیشنهادی شامل کلکتور، کاتد و شبکه آند از نوع مرسوم متفاوت بوده و مبتنی بر فنّاوری MEMS است. کاتد در این طرح از جنس نیکل بوده و میتواند در دمای ℃750 الکترونفکنی نماید. طرح کاتد طوری است که دما در طول آن تقریباً یکنواخت و مستقل از فشار خلأ است. طرح پیشنهادی دارای ضریب حساسیت 0.6 در محدوده اندازهگیری 3-10 الی 7-10×2 تور است. ضریب حساسیت در این طرح 20 برابر کمتر از نوع مرسوم است که عیب این طرح را نشان میدهد. | ||
کلیدواژهها | ||
گیج یونی MEMS؛ حسگر خلأ MEMS؛ گیج یونی کاتد گرم؛ گیج بایارد آلپرت؛ حسگر خلأ | ||
مراجع | ||
[1] L. Zhang, B. Jiao, S. Yun, Y. Kong, C. Ku and D. Chen, "A CMOS Compatible MEMS Pirani Vacuum Gauge with Monocrystal Silicon Heaters and Heat Sinks," Journal of Chinese Physics Letters, vol. 34, no. 2, pp. 025101(1-4), 2017. [2] S. M. Piotto, S. D. Cesta and P. Bruschi, "A Compact CMOS Compatible micro-Pirani Vacuum Sensor with Wide Operating Range and Low Power Consumption," Journal of Procedia Engineering, vol. 168, pp. 766-769, 2016. [3] F. Zhang, Y. Zhen, B. Tang, W. Su and Z. Tang, "Design and Fabrication of High Vacuum Gauge Based on Micro Hotplate," Trans Tech Publications, vol. 645, 2015. [4] F. O. Hanlon, User's Guide to Vacuum Technology, john Wiley and sons, Newyork, 2004. [5] MKS instrument Inc., Tecknical Brochure of 999 Quattro multisensor vacuum transducer, https://www.mksinst.com/docs/ur/pin999.aspx. [6] MKS instrument Inc., Series 943 operation and maintenance manual cold cathode Vacuum Sensor System, https://www.mksinst.com. [7] T. Grzebyk and A. G. Drzazga, "MEMS type ionization vacuum sensor," Journal of Sensors and Actuators A, Physical, vol. 246, pp. 148-155, 2016. [8] Stanford research Systems, Bayard-Alpert Ionization Gauges, http://www.thinksrs.com. [9] J. Q. Wang and J. Yu, "Fabrication Process and Electro-Thermal Modeling for the Cathode of the CMOS-Compatible Hot-Filament Vacuum Gauge", Key Engineering Materials, vol. 645-646, pp. 836-840, 2015 [10] S. M. Bazarchi , E. A. Sani, “Micromachined Ionization Vacuum Gauge and Improve its Sensitivity with Magnetic Field,” Eurasian Journal of Analytical Chemistry, vol.12(7b), pp. 1137-1151, 2017 [11] Stanford research Systems, Bayard-Alpert Ionization Gauges, http://www.thinksrs.com. [12] T. Grzebyk, A. G. Drzazga and J. A. Dziuban, "Glow-discharge ion-sorption micropump for vacuum MEMS," Journal of Sensors and Actuators A: Physical, vol. 208, pp. 113-119, 2014. [13] S. Suginuma, M. Hirata and T. Kobata, "Simulation of Relative Sensitivity Coefficient of Bayard-Alpert Gauge," Journal of the Vacuum Society of Japan, vol. 59, no. 6, pp. 156-159, 2016. [14] Y. K. Kim and J. P. Desclaux, "Ionization of carbon, nitrogen, and oxygen by electron impact," Journal of Physical Review A, vol. 66, no. 1, pp. 66 012708(1-12) ,2002. [15] T. Grzebyk, A. G. Drzazga, J. A. Dziuban and K. Maamari, "Integration of a MEMS-type vacuum pump with a MEMS-type Pirani pressure gauge," Journal of Vacuum Science & Technology B, vol. 33, no. 3, pp. 03C103(1-6), 2015. [16] MKS instrument Inc., shrinking thepirani vacuum gauge, http://www.johnmorris.com.au. [17] Talking electronics, Electron Emission, http://www.talkingelectronics.com. [18] Electronic cooling, The Thermal Conductivity of Air at Reduced Pressures and Length Scales, https://www.electronicscooling.com. [19] B. David, Introduction to Gas Discharges, University of Notre Dame, Notre Dame ,2012. [20] Keysight Technologies, Femto Picoammeter and Electrometer High Resistance Meter, https://www.amplicon.com. [21] Electronic Afzar Azama, pico Amperemeter, http://www.irannano.org [22] K. Tämm, C. Mayeux , L. Sikk , J. F. Gal and P. Burk, "Theoretical modeling of sensitivity factors of Bayard-Alpert ionization gauges," Journal of International Journal of Mass Spectrometry, vol. 341-342, pp. 52-58, 2013. [23] Y. Itikawa, "Cross Sections for Electron Collisions with Nitrogen Molecules," Journal of Physical and Chemical Reference Data, vol. 35, no. 1, pp. 31-53, 2006. [24] MKS instrument inc., Mini Ion Gauge (MIG), Hot Cathode Ionization Pressure Vacuum Sensor, https://www.mksinst.com. [25] B. Razavi, RF Microelectronics, 2nd Edition, Prentice Hall, 2011. [26] علیرضا شمسی، سعید دلآرام فریمانی و احمد عفیفی، «استفاده از روش لیتوگرافی نرم جهت ایجاد میکروساختارها روی بستر آبدوست شده پلیمر،» مجله مهندسی برق دانشگاه تبریز، دوره 46, شماره 2,صفحات 133-127, 1395 | ||
آمار تعداد مشاهده مقاله: 425 تعداد دریافت فایل اصل مقاله: 375 |