تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,021 |
تعداد مشاهده مقاله | 52,491,247 |
تعداد دریافت فایل اصل مقاله | 15,218,235 |
بررسی و کنترل عوامل مؤثر در ایجاد نوسانات توان در توربینهای بادی سرعت متغیر با ژنراتور القایی تغذیه دوگانه | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 13، دوره 48، شماره 4 - شماره پیاپی 86، اسفند 1397، صفحه 1559-1570 اصل مقاله (1.46 M) | ||
نویسندگان | ||
مرضیه رشیدیان؛ بابک گنجی* ؛ محسن رحیمی | ||
دانشکده مهندسی برق و کامپیوتر - دانشگاه کاشان | ||
چکیده | ||
با افزایش سطح نفوذ انرژی باد به شبکه، توجه به کیفیت توان موضوع مهمی شده است. از مهمترین جنبههای کیفیت توان، پدیده سوسوزدن و هارمونیکها هستند. عوامل مختلفی در انتشار پدیده سوسوزدن و ایجاد نوسانات توان ناشی از توربینهای بادی متصلشده به شبکه مؤثر هستند برای مثال مشخصات باد )سرعت متوسط باد، اثرات سایه برج و برش باد و نوع توربین مورداستفاده)، شرایط شبکه (نسبت ظرفیت اتصالکوتاه شبکه و زاویه امپدانس شبکه) و نوع روش ردیابی حداکثر نقطه توان. در این مقاله عملکرد دو روش ردیابی حداکثر نقطه توان OTCو TSR در انتشار نوسانات بررسی میشود و با انتخاب بهترین روش ردیابی و شرایط شبکه، با اضافهکردن فیلتر نوسانات ناشی از اثر سایه برج و برش باد کاهش داده شده است. کلیه جنبههای آیرودینامیکی، مکانیکی و الکتریکی یک مزرعه بادی متصلشده به شبکه با استفاده از نرمافزارهایFAST و Matlab/Simulink مدل میگردد. نتایج شبیهسازی صحت عملکرد روش پیشنهادی را در بهبود نوسانات توان نشان میدهد. | ||
کلیدواژهها | ||
توربین بادی سرعت متغیر؛ ژنراتور القایی تغذیه دوگانه؛ کیفیت توان؛ ردیابی حداکثر نقطه توان و فیلتر میاننگذر | ||
مراجع | ||
[1] Y. Lei, A. Mullane, G. Lightbody, and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies”, IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 257-264, 2006. [2] T. Thiringer, T. Petru, and S. Lundberg “Flicker contribution from wind turbine installations,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 157-163, 2004. [3] غلامرضا صیاد، امین خدابخشیان، رحمتالله هوشمند، «طراحی پایدارساز سیستم قدرت برای توربینهای بادی مجهز به ژنراتورهای القایی دو تغذیه به روش کلاسیک و الگوریتم ژنتیک»، مجله مهندسی برق تبریز، دوره 39، شماره 1، صفحه 23-13، بهار 1388. [4] محسن رحیمی، محمدرضا اسماعیلی، «طراحی کنترلکننده توان و بهبود میرایی نوسانات پیچشی در توربین بادی DFIG-710 kW نصبشده در سایت بینالود»، مجله مهندسی برق تبریز، دوره 46، شماره 4، صفحه 134-123، زمستان 1395. [5] T. Sun, Z. Chen, and F. Blaabjerg, “Flicker study on variable speed wind turbines with doubly fed induction generators,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 896-905, 2005. [6] Y. Zhang, Z. Chen, W. Hu, M. Cheng, and Y. Hu, “Flicker mitigation strategy for a doubly fed induction generator by torque control,” IET Renew Power Gen., vol. 8, no. 2, pp. 91-99, 2014. [7] Y. S. Kim and D. J. Won, “Mitigation of the flicker level of a DFIG using power factor angle control,” IEEE Trans. Power Del., vol. 24, no. 4, pp. 2457-2458, 2009. [8] Y. Zhang, Z. Chen, W. Hu, and M. Cheng, “Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 20-28, 2014. [9] T. Sun, Z. Chen, and F. Blaabjerg, “Flicker mitigation of grid connected wind turbines using STATCOM,” International Conference on Power Electronics, Machines and Drives, Edinburgh, UK, pp. 175-180, 2004. [10] W. Hu, Z. Chen, Y. Wang, and Z. Wang “Flicker mitigation by active power control of variable-speed wind turbines with full-scale back-to-back power converters,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 640-649, 2009. [11] D. Chwa and K.-B. Lee, “Variable structure control of the active and reactive powers for a DFIG in wind turbines,” IEEE Trans. Ind. Appl., vol. 46, no. 6, pp. 2545-2555, 2010. [12] A. Luna, F. K. A. Lima, D. Santos, P. Rodríguez, E. H. Watanabe, and S. Arnaltes, “Simplified modeling of a DFIG for transient studies in wind power applications,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 9-20, 2011. [13] J. B. Ekanayake, L. Holdsworth, X. Wu, and N. Jenkins, “Dynamic modeling of doubly fed induction generator wind turbines,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 803-809, 2003. [14] H. Jabbari and J. Yoon, “Power capture optimization of variable-speed wind turbines using an output feedback controller,” Renewable Energy, vol. 86, pp. 517-525, 2016. [15] F. Fateh, W. N. White, and D. Gruenbacher, “A maximum power tracking technique for grid-connected DFIG-based wind turbines,” IEEE Trans. Emerg. Sel. Topics Power Electron. , vol. 3, no. 4, pp. 957-966, 2015. [16] B. Yang, L. Jiang, L. Wang, W. Yao, and Q. H. Wu, “Nonlinear maximum power point tracking control and modal analysis of DFIG-based wind turbine,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 429-436, 2016. [17] J. Hu, H. Nian, B. Hu, Y. He, and Z. Q. Zhu, “Direct active and reactive power regulation of DFIG using sliding-mode control approach,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1028-1039, 2010. [18] J. Mohammadi, S. Vaez-Zadeh, S. Afsharnia, and E. Daryabeigi, “A combined vector and direct power control for DFIG-based wind turbines,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 767-775, 2014. [19] E. Tremblay, S. Atayde, and A. Chandra, “Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: A DSP-based implementation approach,” IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 288-299, 2011. [20] T. Sun, Power Quality of Grid-connected Wind Turbines with DFIG and Their Interaction with the Grid, Ph.D. dissertation, Alborg University, Denmark, 2004. [21] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” Electrical Power Distribution Networks Conference, Zahedan, Iran, pp.184-189, 2015. | ||
آمار تعداد مشاهده مقاله: 593 تعداد دریافت فایل اصل مقاله: 551 |