تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,297 |
تعداد دریافت فایل اصل مقاله | 15,216,901 |
مطالعه عددی جریان فرا صوت گاز در یک شیپوره رمپ تک انبساطی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 16، دوره 49، شماره 1، فروردین 1398، صفحه 137-145 اصل مقاله (3.41 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مصطفی زاهدزاده* 1؛ فتح الله امی2 | ||
1دانشجوی دکتری، دانشکده مهندسی مکانیک، گروه هوافضا، دانشگاه تربیت مدرس، تهران، ایران | ||
2دانشیار، دانشکده مهندسی مکانیک، گروه هوافضا، دانشگاه تربیت مدرس، تهران، ایران | ||
چکیده | ||
در بسیاری از طراحیها برای پرندههای فضایی با موتورهای اسکرمجت از شیپورههای رمپ تک انبساطی (سرن) استفاده میشود زیرا استفاده از شیپوره سرن در نسبتهای انبساط زیاد، باعث کاهش وزن شیپوره و کاهش پسای اصطکاکی شده و همچنین یک نیروی برآی اضافی تولید مینماید. هدف از این مقاله بررسی عددی جریان فرا صوت در شیپوره خروجی یک موتور اسکرمجت با استفاده از یک کد عددی فرترن میباشد. برای حل مسأله از حل معادلات ناویر-استوکس استفاده شده است. معادلات حاکم بر حوزۀ حل، شامل معادله پایستاری جرم، معادلات مومنتوم، معادله انرژی و معادله حالت گاز کامل میباشند که برای جریان تراکمپذیر لزج دو-بعدی استفاده شدهاند. برای حل عددی این معادلات از روش گامزنی زمانی یعنی شکل ناپایای معادلات ناویر-استوکس استفاده شده است. در اینجا با روش گامزنی زمانی برای حل جریان ناپایا پاسخ حالت پایا نتیجه شده است. در ادامه نتایج حاصل از کد عددی با نتایج فلوئنت و نتایج روش مشخصهها و نتایج تجربی مقایسه شده است که این مقایسه نشان دهنده تطابق خوب نتایج حل عددی با نتایج تجربی و سایر نتایج میباشد. | ||
کلیدواژهها | ||
شیپوره رمپ؛ موتور اسکرمجت؛ احتراق فرا صوت؛ حل عددی؛ ناویر استوکس | ||
مراجع | ||
[1] Suresh C. K., Ashwin K. K., Parammasivam K. M., Computational Study of the Effect of Geometric Parameters On The Performance Of Single Expansion Ramp Nozzle Flows, International Journal of Mechanical and Industrial Engineering (IJMIE) ISSN No. 2231-6477, Vol-3, Iss-1, 2013. [3] http://www.wikipedia.com [4] Joseph M. H., James S. M., Richard C. M., The X-51A Scramjet Engine Flight Demonstration Program, AIAA-2008-2540, 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, Ohio, 28 April – 1 May 2008. [5] Hank J., Murphy J., Mutzman R., The X-51A Scramjet Engine Flight Demonstration Program, in 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference (AIAA 2008-2540), Dayton, Ohio, 28 April - 1 May 2008. [6] Tran K. K., One Dimensional Analysis Program for Scramjet and Ramjet Flowpaths, Master of Science Thesis, Virginia Polytechnic Institute and State University, December 2010. [7] فیلیپ هیل، کارل پیترسون، ترجمه کریم مظاهری، محمدعلی ایوبی، مکانیک و ترمودینامیک پیشرانش، انتشارات علمی دانشگاه صنعتی شریف، چاپ اول، 1377. [8] Segal C., Corin S., The Scramjet Engine: Processes and Characteristics, Published in the United States of America by Cambridge University Press, New York, 2009. [9] Chandraprakash T., Computational Simulation Of Scramjet Combustors – A Comparison Between Quasi-One Dimensional And 2-D Numerical Simulations, Master of Science Thesis, University Of Kansas School Of Engineering, 2011. [10] Heiser W. H., Pratt D. T. (with Daley, D. H. and Mehta, U. B.), Hypersonic Airbreathing Propulsion, AIAA Educational Series, 1994. [11] Saeed Farokhi, Aircraft Propulsion, Second Edition, John Wiley & Sons Ltd, 2014. [12] Rao G. V R., Exhaust nozzle contour for optimum thrust, Journal of Jet Propulsion, Vol. 28, No. 6, pp. 377–382, 1958. [13] Huang Z. C., The aerodynamic design of nozzle for aerospace plane, Experiments and Measurements in Fluid Mechanics, Aerodyn Exp Meas Control, 7: 1–10, 1993. [14] Chen B., Xu X., Cai G. B., Optimization design of two dimensional scramjet nozzle based on N-S equations, Journal of Propulsion Technology, 23: 433–437, 2002. [15] Chen B., Xu X., Cai G. B., Single- and multi-objective optimization of scramjet components using genetic algorithms based on a parabolized navier-stokes solver, AIAA-2006-4686, 2006. [16] Shengjun Ju, Chao Yan, Xiaoyong Wang, Yupei Qin, Zhifei Ye, Optimization design of energy deposition on single expansion ramp nozzle, Journal of Acta Astronautica, Vol. 140, pp. 351-361, 2017. [17] Marathe A. G., Thiagarajan V., Effect of geometric parameters on the performance of single expansion ramp nozzle, AIAA-2005-4429, 2005. [18] Damira S. K., Marathe A. G., Sudhakar K., Parametric optimization of single expansion ramp nozzle (SERN), 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9 - 12 July 2006, Sacramento, California, AIAA-2006-5188, 2006. [19] He X. Z., Zhang Y., Wang G. Y., et al., Automated design optimization of single expansion ramp nozzle for hypersonic vehicle, Journal of Propulsion Technology, 28: 148–151, 2007. [20] Che J., Tang S., The application of genetic algorithms to afterbody/nozzle integrated design of a hypersonic vehicle, Flight Dynamics, 24: 74–77, 2006. [21] Gao T., Cui K., Wang X., Hu S., Yang G. and Ren L., Aerodynamic optimization and evaluation for the three-dimensional afterbody/nozzle integrated configuration of hypersonic vehicles, Chinese Science Bulletin, Fluid Mechanics, Vol. 57, No. 8, pp. 849-857, March 2012. [22] Zheng Lv, Jinglei Xu, Yang Yu, Jianwei Mo, A new design method of single expansion ramp nozzles under geometric constraints for scramjets, Journal of Aerospace Science and Technology, P.4 (1-11), 2017. [23] Hopkins H. B., Konopka W., and Leng J., Validation of scramjet exhaust simulation technique at Mach 6, NASA Contractor Report 3003, 1979. [24] Huebner L. D., and Tatum K. E., Computational and Experimental Aftbody Flow Fields for Hypersonic, Airbreathing Configurations with Scramjet Exhaust Flow Simulation, AIAA Paper 91-1709, June 1991. [25] Tohru M., Shuichi U., Koichiro T., Shigeru S., Hiroshi M., Masashi M., Shouhachi Y., Validation Studies of Scramjet Nozzle Performance, Journal Of Propulsion And Power, Vol. 9, No. 5, Sept.-Oct. 1993. [26] Bakhtiyar M. Nafis, Tushar Paul, and A. B. M. Toufique Hasan, Effect of flap temperature on single expansion ramp nozzle performance, 7th BSME International Conference on Thermal Engineering, 2017. [27] Karri S. N., Dinesh K. B., Modelling and Exhaust Nozzle Flow Simulations in a Scramjet, International Journal of Science and Research (IJSR), ISSN (Online): 2319-7064, 2013. [28] Ramesha D. K., Rudra M., HemanthKumar P., CFD Analysis of Supersonic Exhaust in a Scramjet Engine, International Journal of Innovative Research in Science, Engineering and Technology, ISSN: 2319-8753, 2013. [29] Zhang X., Qin L., Chen H., He X., Liu Y., Radical recombination in a hydrocarbon-fueled scramjet nozzle, Chinese Journal of Aeronautics, 27(6): 1413–1420, 2014. [30] Denton J. D., An Improved Time Marching Method for Turbomachinery Flow Calculation, Journal of Engineering for Gas Turbines and Power, Vol. 105, pp. 514-521, July 1983. [31] Jameson A., Schmidt W., Turkel E., Numerical Solution of Euler Equation by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes, AIAA. Paper No. AIAA-81-1259, 1981. [32] تیمورتاش ع.، وهابزاده کلخوران م.، مهپیکر م.، بررسی تأثیر اندازۀ گام بر روی تلفات یک کسکید از پرههای توربین و مقایسۀ آن با معیار تجربی سویفل، نهمین کنفرانس انجمن هوافضای ایران، تهران، بهمن ماه 1388. [33] تیمورتاش ع.، وهابزاده کلخوران م.، مهپیکر م.، حذف معادله انرژی در روش زمان پیمایشی جیمسون برای حل جریان تراکم پذیر بی دررو بین پره های یک توربین، دهمین همایش انجمن هوافضای ایران، تهران،انجمن هوافضای ایران، دانشگاه تربیت مدرس، 1389. [34] Ng K. C., Yusoff M. Z., Yusaf T. F., Simulations of Two-dimensional High Speed Turbulent Compressible Flow in a Diffuser and a Nozzle Blade Cascade, American Journal of Applied Sciences, Vol. 2, No. 9, pp. 1325-1330, 2005. [35] Deepu M., Gokhale, Jayaraj S. S., Numerical Modelling of Scramjet Combustor, Defence Science Journal, Vol. 57, No. 4, pp. 367-379, July 2007. | ||
آمار تعداد مشاهده مقاله: 395 تعداد دریافت فایل اصل مقاله: 454 |