تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,834 |
تعداد دریافت فایل اصل مقاله | 15,213,871 |
بررسی خواص ریزساختاری و مکانیکی کامپوزیت چندلایهی آلومینیم/مس/منیزیم تولید شده با استفاده از فرآیند پیوند سرد نوردی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 23، دوره 48، شماره 4، بهمن 1397، صفحه 203-208 اصل مقاله (2.13 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مسلم طیبی1؛ داود رحمت آبادی2؛ رضا رشیدی3؛ رامین هاشمی* 4 | ||
1کارشناس ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران | ||
2کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3دانشجوی کارشناس ارشد، دانشکده مهندسی مواد، دانشگاه تهران، تهران، ایران | ||
4استادیار، گروه مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
چکیده | ||
در این پژوهش کامپوزیت لایهای آلومینیوم/مس/منیزیم با روش پیوند نوردی تولید شد. همچنین خواص مکانیکی، شکستنگاری و ریزساختار با استفاده از آزمون کشش تکمحوره، میکروسختی، عکسبرداری از سطح مقطع شکست با استفاده از میکروسکوپ الکترونی روبشی و میکروسکوپ نوری مورد بررسی قرار گرفت. نتایج حاصل از آزمونهای انجام شده حاکی از افزایش استحکام و میکروسختی برای نمونهی کامپوزیتی آلومینیوم/مس/منیزیم نسبت به نمونههای اولیه آلومینیوم، مس خالص و منیزیم است که عامل اصلی این افزایش اعمال کرنش زیاد و کار سرد میباشد. استحکام کششی برای نمونهی تولید شده به 3/220 مگاپاسکال رسید که نسبت به نمونههای اولیه آلومینیوم مس و منیزیم به ترتیب 144 %، 23 % و 29 % افزایش یافت. عکسهای میکروسکوپ الکترون روبشی نشان داد که سطح مقطع شکست لایههای آلومینیم و مس نرم، در صورتیکه سطح مقطع شکست لایه منیزیم کاملا ترد است. | ||
کلیدواژهها | ||
کامپوزیت لایه ای آلومینیوم/مس/منیزیم؛ پیوند سرد نوردی؛ خواص مکانیکی؛ شکست نگاری و ریزساختار | ||
مراجع | ||
[1] Alizadeh M. and Samiei M., Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Materials & Design, Vol. 56, pp. 680-684, 4//, 2014. [2] Eizadjou M., Talachi A. K., Danesh Manesh H., Shahabi H. S. and Janghorban K., Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process, Composites Science and Technology, Vol. 68, No. 9, pp. 2. 2003-2008, 2009 . [3] Tayyebi M. and Eghbali B., Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding, Materials Science and Engineering: A, Vol. 559, pp. 759-764, 1/1/, 2013. [4] Mehr V. Y., Rezaeian A. and Toroghinejad M. R., Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al 2 O 3 composite, Materials & Design, Vol. 70, pp. 53-59, 2015. [5] Li L., Nagai K. and Yin F., Progress in cold roll bonding of metals, Science and Technology of Advanced Materials, 2016. [6] Bay N., COLD WELDING. PART 2: PROCESS VARIANTS AND APPLICATIONS, 1986. [7] Milner D. and Vaidyarath L., Significance of surface preparation in cold pressure welding, MET CONSTR BR WELD J, Vol. 7, pp. 1-6, 1960 . [8] Clemensen C., Juelstorp O. and N. Bay, Cold welding. Part 3: influence of surface preparation on bond strength, 1986. [9] Vaidyarath L., Nicholas M. and Milner D., Pressure welding by rolling Brit, Welding J, Vol. 6, pp. 13-28, 1959. [10] Wright P., Snow D. and Tay C., Interfacial conditions and bond strength in cold pressure welding by rolling, Metals Technology, Vol. 5, No. 1, pp. 24-31, 1978. [11] Yong J., Dashu P., Dong L. and Luoxing L., Analysis of clad sheet bonding by cold rolling, Journal of Materials Processing Technology, Vol. 105, No. 1, pp. 32-37, 2000. [12] Yahiro A., Masui T., Yoshida T. and Doi D., Development of Nonferrous Clad Plate and Sheet by Warm Rolling with Different Temperature of Materials, ISIJ international, Vol. 31, No. 6, pp. 647-654, 1991. [13] Madaah-Hosseini H. and Kokabi A., Cold roll bonding of 5754-aluminum strips, Materials Science and Engineering: A, Vol. 335, No. 1, pp. 186-190, 2002. [14] Pan D., Gao K. and Yu J., Cold roll bonding of bimetallic sheets and strips, Materials science and technology, Vol. 5, No. 9, pp. 934-939, 1989. [15] Danesh Manesh H. and Karimi Taheri A., Study of mechanisms of cold roll welding of aluminium alloy to steel strip, Materials science and technology, Vol. 20, No. 8, pp. 1064-1068, 2004. [16] Eizadjou M., Danesh Manesh H. and Janghorban K., Investigation of roll bonding between aluminum alloy strips, Materials & Design, Vol. 29, No. 4, pp. 909-913, 2008. [17] Le H., Sutcliffe M., Wang P. and Burstein G., Surface oxide fracture in cold aluminium rolling, Acta Materialia, Vol. 52, No. 4, pp. 911-920, 2004. [18] Jamaati R. and Toroghinejad M. R., Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process, Materials & Design, Vol. 3, No. 9, pp. 4508-4513, 2010. [19] Lukaschkin N., Borissow A. and Erlikh A., The system analysis of metal forming technique in welding processes, Journal of materials processing technology, Vol. 66, No. 1, pp. 264-269, 1997. [20] Wu H., Lee S. and Wang J., Solid-state bonding of iron-based alloys, steel–brass, and aluminum alloys, Journal of Materials Processing Technology, Vol. 75, No. 1, pp. 173-179, 1998. [21] Karakazov N., Diffusion bonding of metals, Pergamon Press Oxford, 1985. [22] Luo J. and Acoff L., Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Materials Science and Engineering: A, Vol. 379, No. 1, pp. 164-172, 2004. [23] Barlow C., Nielsen P. and Hansen N., Multilayer roll bonded aluminium foil: processing, microstructure and flow stress, Acta materialia, Vol. 52, No. 13, pp. 3967-3972, 2004. [24] Quadir M., Wolz A., Hoffman M. and Ferry M., Influence of processing parameters on the bond toughness of roll-bonded aluminium strip, Scripta Materialia, Vol. 58, No. 11, pp. 959-962, 2008. [25] Abbasi M. and Toroghinejad M. R., Effects of processing parameters on the bond strength of Cu/Cu roll-bonded strips, Journal of Materials Processing Technology, Vol. 210, No. 3, pp. 560-563, 2010. [26] Jamaati R. and Toroghinejad M. R., Investigation of the parameters of the cold roll bonding (CRB) process, Materials Science and Engineering: A, Vol. 527, No. 9, pp. 2320-2326, 2010. [27] Danesh Manesh H and Karimi Taheri A., The effect of annealing treatment on mechanical properties of aluminum clad steel sheet, Materials & design, Vol. 24, No. 8, pp. 617-622, 2003. [28] Movahedi M., Madaah-Hosseini H. and Kokabi A., The influence of roll bonding parameters on the bond strength of Al-3003/Zn soldering sheets, Materials Science and Engineering: A, Vol. 487, No. 1, pp. 417-423, 2008. [29] K. J. B. McEwan, D. Milner, Pressure welding of dissimilar metals, BRITISH WELDING JOUR, Vol. 9, pp. 406-420, 1962. [30] Butlin I. and Mackay C., Experimenls on the Roll-Uonding of Tin Coatings to Non-Ferrous Substrates, Sheet Metal Ind., Vol. 56, No. 11, pp. 1063-1064, 1979. [31] Lu C., Tieu K. and Wexler D., Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiO 2 particles, Journal of Materials Processing Technology, Vol. 209, No. 10, pp. 4830-4834, 2009. [32] Alizadeh M. and Paydar M., Study on the effect of presence of TiH 2 particles on the roll bonding behavior of aluminum alloy strips, Materials & Design, Vol. 30, No. 1, pp. 82-86, 2009 . [33] Tsuji N., Saito Y., Utsunomiya H. and Tanigawa S., Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process, Scripta Materialia, Vol. 40, No. 7, pp. 795-800, 3/5/, 1999. [34] Shaarbaf M. and Toroghinejad M. R., Nano-grained copper strip produced by accumulative roll bonding process, Materials Science and Engineering: A, Vol. 473, No. 1, pp. 28-33, 2008. [35] Yang D., Cizek P., Hodgson P. and Wen C., Ultrafine equiaxed-grain Ti/Al composite produced by accumulative roll bonding, Scripta materialia, Vol. 62, No. 5, pp. 321-324, 2010. [36] Wu K., Chang H., Maawad E., Gan W., Brokmeier, M. and Zheng H., Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB), Materials Science and Engineering: A, Vol. 527, No. 13, pp. 3073-3078, 2010. [37] Shabani A., Toroghinejad M. R. and Shafyei A., Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties, Materials Science and Engineering: A, Vol. 558, pp. 386-393, 12/15/, 2012. [38] Jamaati R. and Toroghinejad M. R., Cold roll bonding bond strengths: review, Materials Science and Technology, Vol. 27, No. 7, pp. 1101-1108, 2011. [39] Reihanian M. and Naseri M., An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer, Materials & Design, Vol. 89, pp. 1213-1222, 1/5/, 2016. [40] Rahmatabadi D. and Hashemi R., Experimental investigation of fracture surfaces and mechanical properties of AA1050 aluminum produced by accumulative roll bonding process, Modares Mechanical Engineering, Vol. 16, No. 10, pp. 305-312, 2016. [41] Rahmatabadi D., Tayyebi M. and Hashemi R., Investigation of mechanical properties, fracturgeraphi and microstructure of layered Al/Cu composite produced by cold roll bonding, journal of science and technology of composites, 2017. | ||
آمار تعداد مشاهده مقاله: 413 تعداد دریافت فایل اصل مقاله: 833 |