تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,887 |
تعداد دریافت فایل اصل مقاله | 15,213,917 |
شبیهسازی بلوک دیاگرامی توربینهای باد محور افقی مقیاس بزرگ | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 2، دوره 48، شماره 4، بهمن 1397، صفحه 11-18 اصل مقاله (2.58 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
عباس ابراهیمی* 1؛ میلاد آذردار2 | ||
1دانشیار، گروه مهندسی هوافضا، دانشگاه صنعتی شریف، تهران، ایران | ||
2کارشناسارشد، پژوهشکده سامانههای هوشمند صنعتی شهید رضایی، دانشگاه صنعتی شریف، تهران، ایران | ||
چکیده | ||
در پژوهش حاضر، روشی برای شبیهسازی بلوک دیاگرامی یک توربین باد محور افقی مرجع با مکانیزم کنترل توان زاویه پیچ ارایه شدهاست. از روش مهندسی تقریب تحلیلی برای مدل آیرودینامیک روتور و تخمین ضریب توان توربین و از کنترلگر PID برای کنترل زاویه پیچ پره روتور استفاده شدهاست. همچنین بستر نرمافزار امسیم برای پیادهسازی معادلات حاکم بر سیستم انتقال توان و ژنراتور و سپس ترکیب مدل آنها با بخش آیرودینامیک و کنترلگر بهکار گرفته شدهاست. بهکمک مدل بلوک دیاگرامی پیشنهادی، رفتار گذرای توربین و عملکرد کنترل زاویه پیچ در تنظیم توان خروجی برای حالتیکه پروفیل سرعت باد ورودی به صفحه روتور طی 130 ثانیه بهصورت خطی از 21 تا 8 متربرثانیه تغییر میکند، بررسی شدهاست. نتایج نشان دهنده دقت قابل قبول مدل برای پیشبینی رفتار عملکرد توربین است. همچنین استفاده از مدل آیرودینامیک و کنترلگر دقیقتر موجب بهبود نتایج میشود. اعتبارسنجی شبیهسازی با مقایسه عملکرد توربین با نتایج توربین مرجع انجام شدهاست. | ||
کلیدواژهها | ||
توربین باد محور افقی؛ شبیهسازی بلوک دیاگرامی؛ کنترل توان؛ نرمافزار AMESim | ||
مراجع | ||
[1] The European offshore wind industry – key trends and statistics 2016. European Wind Energy Association (EWEA), 2017. [2] Spinato F., Tavner P.J., Van Bussel G.J.W. and Koutoulakos E., Reliability of wind turbine subassemblies. IET Renewable Power Generation, 3(4), pp.387-401, 2009. [3] Singh M. and Santoso S., Dynamic models for wind turbines and wind power plants. National Renewable Energy Laboratory (NREL), Report No. NREL/SR-5500-52780, 2011. [4] Abobkr A.H. and El-Hawary M.E., Evaluation of wind turbine characteristics built-in model in Matlab Simulink. In Electrical Power and Energy Conference (EPEC), IEEE, 2016. [5] Hansen A.D., Jauch C., Sørensen P.E., Iov F. and Blaabjerg F., Dynamic wind turbine models in power system simulation tool DIgSILENT. Technical University of Denmark, Risø National Laboratory, Risø-R-1400(ed.2)(EN), 2007. [6] Lei T., Ozakturk M. and Barnes M., Modelling and analysis of DFIG wind turbine system in PSCAD/EMTDC. 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), 2012. [7] Li X., Shi H., Wang Y. and Miao F., Modeling and Simulation of Wind Turbine Based on AMESim. IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) 2012. [8] Shi W., Kim C.W., Chung C.W. and Park H.C., Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model. International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 1, pp.153-159, 2013. [9] Shi W., Park H.-C., Na S., Song J., Ma S. and Kim C.-W., Dynamic analysis of three-dimensional drivetrain system of wind turbine. International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 7, pp. 1351–1357, 2014. [10] Zhu C., Chen S., Liu H., Huang H., Li G. and Ma F., Dynamic analysis of the drive train of a wind turbine based upon the measured load spectrum. Journal of Mechanical Science and Technology, Vol. 28, No. 6, pp. 2033-2040, 2014. [11] Zhu C., Chen S., Song C., Liu H., Bai H. and Ma F., Dynamic analysis of a megawatt wind turbine drive train. Journal of Mechanical Science and Technology, Vol. 29, No. 5, pp. 1913-1919, 2015. [12] Rudion K., Orths A. and Styczynski Z., Modelling of variable speed wind turbines with pitch control. Proceedings of the 2th International Conference on Critical Infrastructures, Grenoble, France, October 25-27, 2004. [13] General Specification, V90-1.8/2.0 MW 50 Hz VCS, T05 0004-6207, 2010. [14] Manwell J. F., Mc Gowan J. G. and Rogers A. L., Wind energy explained: theroy, design and application. 2nd edition, Wiley, England, 2009. [15] Burton T., Sharpe D., Jenkins N. and Bossanyi E, Wind Energy Handbook. John Wiley and Sons, Ltd., 2001. [16] Ebrahimi A. and Sekandari, M., Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes. Energy, Vol. 145, pp. 261-275, 2018. [17] Rolan A., Luna A., Vazquez G., Aguilar D. and Azevedo G., Modeling of a variable speed wind turbine with a permanent magnet synchronous generator. In Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on (pp. 734-739). IEEE. [18] Heier S., Grid integration of wind energy: onshore and offshore conversion systems. John Wiley & Sons, 2014. [19] Behera S., Subudhi B. and Pati B.B., Design of PI controller in pitch control of wind turbine: A comparison of PSO and PS algorithm. International Journal of Renewable Energy Research (IJRER), 6(1), pp. 271-281, 2016. [20] Martin G. H., Kinematics and dynamics of machines. Waveland Press, 2002. [21] Muller S., Deicke M. and De Doncker R.W., Doubly fed induction generator systems for wind turbines. IEEE Industry applications magazine, 8(3), pp. 26-33, 2002. [22] Theodore W., Electrical machines, drives and power systems, 6th edition, Pearson Education India, 2007. [23] Todorov M., Dobrev I. and Massouh F., Analysis of torsional oscillation of the drive train in horizontal-axis wind turbine. In Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, ELECTROMOTION 2009. 8th International Symposium on (pp. 1-7). IEEE, 2009. [24] Kooijman H.J.T., Lindenburg C., Winkelaar D. and Van der Hooft E.L., DOWEC 6 MW Pre-Design: Aero-elastic modeling of the DOWEC 6 MW pre-design in PHATAS. Energy Research Center of the Netherlands, Technical Report No. DOWEC 10046_009, 2003. | ||
آمار تعداد مشاهده مقاله: 428 تعداد دریافت فایل اصل مقاله: 537 |