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Abstract A direct rational exponential scheme is offered to construct exact multi-soliton so-
lutions of nonlinear partial differential equations. We have considered the Calogero-

Bogoyavlenskii-Schiff equation and KdV equation as two concrete examples to show

efficiency of the method. As a result, one wave, two wave and three wave soliton
solutions are obtained. Corresponding potential energy of the soliton are found. Fur-

thermore, three-dimensional plots of the wave solutions and its potential functions

are given to visualize the dynamics of the model and its energy. We also provided the
corresponding density plot of the solutions to understand the real direction and par-

ticles density in the waves which help to realize the elastic situations of the achieved
solutions.
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1. Introduction

The effort in finding exact solutions to non-linear differential equations is an im-
portant task for understanding most of the nonlinear physical phenomena in applied
mathematics, physics, in fluid dynamics, plasma and optical fibers, biology and is-
sues related to engineering. For instance, the nonlinear wave phenomena observed
are often modeled by the bell shaped sech solutions and the kink shaped tanh so-
lutions and are founded by different methods such as, inverse scattering transform
[1], analytical methods [4], the exp-function method [5, 14, 17], the Hirota’s bilinear
method [6], the Jacobi elliptic function expansion method [7], the (G′/G)-expansion
method [2, 18, 21], Backlund transformation [13], Darboux transformation [12], the
multiple exp-function method [9], the symmetry algebra method [10], the Wronskian
technique [11], the exp(−Φ(ξ))-expansion method [19, 20] and few analytical meth-
ods [3, 8, 15, 16, 22, 23, 24, 25, 26, 27]. Studies of completely integrable equations
and nonlinear phenomena are affluent in relation to solitary wave fields and engi-
neering concepts. In soliton theory, non-elastic phenomena are rear case and there
are rear model in the literature in which this phenomena exist. Actually, the inter-
actions between two or more soliton solutions for integrable models are considered
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to be completely elastic and their amplitude, velocity, wave shape do not change af-
ter the non-linear interaction. Furthermore, some models exist in the literature are
completely non-elastic, depending conditions between the wave vectors and velocities.
Wazwaz [24, 25, 26] investigated multiple soliton solutions such type of non-elastic
phenomena. Burgers equation and Sharma-Tasso-Olver equation are such types of
model are studies in previous literature. Wang et al. [27] found non-elastic soliton
fission and fusion: Burgers equation and Sharma-Tasso-Olver equations with only two
dispersion relations.

In this article, we investigate completely non-elastic multi-soliton (two wave and three
wave solutions) the Calogero-Bogoyavlenskii-Schiff equations and KdV equation.

2. One, two and three wave solutions of the
Calogero-Bogoyavlenskii-Schiff

In this section, we bring to bear a direct rational exponential approach to find one,
two and three wave solutions of the Calogero-Bogoyavlenskii-Schiff equation which
is an extremely important nonlinear evolution equation in mathematical physics and
have been paid attention by a lot of researchers. We start with the (2+1)-dimensional
Calogero-Bogoyavlenskii-Schiff (CBS) equation in the form

uxt + uxxxz + 4uxuxz + 2uxxuz = 0, (2.1)

which has both the non-linear radiation and the diffusion effect.
For single soliton solution we first consider trial solution as

u(x, z, t) = r
k1c1exp(k1x+ l1z + w1t)

a0 + c1exp(k1x+ l1z + w1t)
. (2.2)

Inserting Eq. (2.2) into Eq. (2.1) and then maintenance all the coefficients of
exp(k1x + l1z + w1t)

i, (i = · · · − 2,−1, 0, 1, 2, · · · ) is zero, yields a system of alge-
braic equations about a0, c1, w1 and k1 as follows:

−11k2
1l1c1a

2
0 + w1a

2
0c1 + 6rc1l1a

2
0k

2
1 = 0,

11k2
1l1c

2
1a0 − w1c

2
1a0 − 6ra0l1c

2
1k

2
1 = 0,

−w1c
3
1 − k2

1c
3
1l1 = 0,

w1a
3
0 + k2

1a
3
0l1 = 0.

Solving the above over-determined system of algebraic equations for a0, w1, l1, r with
the aid of commercial software Maple 13, we arrive at the following solutions:
a0 = const., l1 = const., w = −l1k2

1, r = 2 and c1 is free parameter.
Thus the solution is

u(x, z, t) = 2
k1c1exp(k1x+ l1z − l1k2

1t)

a0 + c1exp(k1x+ l1z − l1k2
1t)

, (2.3)

and corresponding potential energy of the soliton Eq. (2.3) is read as v(x, z, t) =
−ux(x, z, t).
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Figure 1. (a) Profile of the single solitary wave solution Eq. (2.3)
of CBS equation, (b) Potential field with c1 = k1 = l1 = a0 = 1.
Along z = 0, (c) Density plot of (a) and (d) Density plot of (b).

To obtain two wave soliton solutions, we assume

u(x, z, t) = r
Υ1

Υ2
, (2.4)

where Υ1 = k1c1exp(ξ1) + k2c2exp(ξ2) + a12(k1 + k2)c1c2exp(ξ1 + ξ2),Υ2 = ao +
c1exp(ξ1)+ c2exp(ξ2)+a12c1c2exp(ξ1 + ξ2), ξ1 = k1x+ l1z+w1t, ξ2 = k2x+ l2z+w2t;
c1, c2 are free parameters and the corresponding potential field reads v = −ux(x, z, t).
Directly inserting Eq.(2.4) in the Eq. (2.1) via commercial software Maple 13, and
solving for r, a0, k1, k2, l1, l2, w1, w2 and a12, we have r = 2, a0 = const., a12 =

(k1−k2)2

a0(k1+k2)2 , w1 = −l1k2
1, w2 = −l2k2

2.



CMDE Vol. 7, No. 1, 2019, pp. 86-95 89

Figure 2. (a) Profile of two solitary wave elastic solution Eq. (2.5)
of CBS equation, (b) Potential field with c1 = k1 = l1 = c2 = a0 =
1, k2 = −1.5 along z = 0, (c) density plot of (a) and (d) density plot
of (b).

Thus solution is

u(x, z, t) = 2
Υ1

Υ2
, (2.5)

where Υ1 = k1c1exp(ξ1)+k2c2exp(ξ2)+ (k1−k2)2

a0(k1+k2)c1c2exp(ξ1+ξ2),Υ2 = ao+c1exp(ξ1)+

c2exp(ξ2) + (k1−k2)2

a0(k1+k2)2 c1c2exp(ξ1 + ξ2), ξ1 = k1x+ l1z − l1k2
1t, ξ2 = k2x+ l2z − l2k2

2t,

and a0, c1, c2, k1, k2, l1, l2 are arbitrary constants. The corresponding potential field
reads v(x, z, t) = −ux(x, z, t).
To obtain three soliton solutions, we assume

u(x, t) = r
Υ1

Υ2
, (2.6)
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Figure 3. Profile of three solitary wave elastic solution Eq. (2.6) of
CBS equation, (b) Corresponding potential field with c1 = k1 = l1 =
c2 = a0 = 1, k2 = −1.5 along z = 0, (c) density plot of (a) and (d)
density plot of (b).

where Υ1 = k1c1exp(ξ1) + k2c2exp(ξ2) + k3c3exp(ξ3) + a12(k1 + k2)c1c2exp(ξ1 +
ξ2) + a23(k2 + k3)c2c3exp(ξ2 + ξ3) + a13(k1 + k3)c1c3exp(ξ1 + ξ3) + a123(k1 + k2 +
k3)c1c2c3exp(ξ1 + ξ2 + ξ3),
Υ2 = a0 + c1exp(ξ1) + c2exp(ξ2) + c3exp(ξ3) + a12c1c2exp(ξ1 + ξ2) + a23c2c3exp(ξ2 +
ξ3) + a13c1c3exp(ξ1 + ξ3) + a123c1c2c3exp(ξ1 + ξ2 + ξ3), ξ1 = k1x+ l1z + w1t, ξ2 =
k2x+ l2z +w2t, ξ3 = k3x+ l3z +w3t and and the corresponding potential field reads
v(x, z, t) = −ux(x, z, t).
Similarly, inserting Eq. (2.6) in the Eq. (2.1) via commercial software Maple 13, and

solving, we gain the unknown parameters r = 2, a0 = const., a12 = (k1−k2)2

a0(k1+k2)2 , a23 =
(k2−k3)2

a0(k2+k3)2 , a13 = (k1−k3)2

a0(k1+k3)2 , a123 = a12a23a13, w1 = −l1k2
1, w2 = −l2k2

2, w3 =

−l3k2
3. Now setting these in Eq. (2.6), we attained three wave solution of CBS equa-

tion. The corresponding potential field reads v(x, z, t) = −ux(x, z, t).
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Observing figures and density plot of the multi-solutions of the CBS equations, we
see that the solutions are completely elastic after collision. That is, before (t < 0)
and after ( t > 0) collision of the wave density and direction remain same except at
phase shift t = 0 .

3. Multi-soliton of KdV equation

In this section, we bring to bear a direct rational exponential approach to study
the KdV equation [26] as

ut + 6uux + uxxx = 0, (3.1)

which describes the nonlinear long waves in physics, engineering and fluid mechanics.
For single soliton solution we first consider trial solution as

u(x, t) = 2
k2

1c1exp(k1x+ w1t)

a0 + c1exp(k1x+ w1t)
− 2(

k1c1exp(k1x+ w1t)

a0 + c1exp(k1x+ w1t)
)2. (3.2)

Inserting Eq. (3.2) into Eq. (3.1) and then maintenance all the coefficients of
exp(k1x+w1t)

i, (i = · · · − 2,−1, 0, 1, 2, · · · ) is zero, yields a system of algebraic equa-
tions about a0, c1, w1 and k1 and then solving via Maple 13 for unknown parameters,
we arrive a0 = const., c1 = const. and w1 = −k3

1.
Thus the solution is

u(x, t) = 2
k2

1c1exp(k1x− k3
1t)

a0 + c1exp(k1x− k3
1t)
− 2(

k1c1exp(k1x− k3
1t)

a0 + c1exp(k1x− k3
1t)

)2, (3.3)

and the corresponding potential field reads as v(x, t) = −ux(x, t).

To achieve two solitons solution, we assume

u(x, t) = 2
Υ1

Υ2
− 2(

Υ3

Υ2
)2, (3.4)

where Υ1 = k2
1c1exp(k1x + w1t) + k2

2c2exp(k2x + w2t) + a12(k1 + k2)2c1c2exp((k1 +
k2)x+(w1 +w2)t),Υ2 = a0 + c1exp(k1x+w1t)+ c2exp(k2x+w2t)+a12c1c2exp((k1 +
k2)x + (w1 + w2)t) and Υ3 = k1c1exp(k1x + w1t) + k2c2exp(k2x + w2t) + a12(k1 +
k2)c1c2exp((k1 + k2)x+ (w1 + w2)t).

Using Eq. (3.4) into the Eq. (3.1) and applying the same procedure used in finding
two wave solutions in CBS equations with the help of commercial software Maple

13 and solving for a0, w1, w2 and a12 we have a0 = const., a12 = (k1−k2)2

a0(k1+k2)2 , w1 =

−k3
1, w2 = −k3

2.
Now inserting these parameters in the Eq. (3.4), we get the required two waves soliton
solution and thus the solution is

u(x, t) = 2
Υ1

Υ2
− 2(

Υ3

Υ2
)2, (3.5)

where Υ1 = k2
1c1exp(k1x−k3

1t)+k
2
2c2exp(k2x−k3

2t)+
(k1−k2)2

a0
c1c2exp((k1+k2)x−(k3

1+

k3
2)t),Υ2 = a0 + c1exp(k1x−k3

1t) + c2exp(k2x−k3
2t) + (k1−k2)2

a0(k1+k2)2 c1c2exp((k1 +k2)x−
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Figure 4. (a) Profile of the single solitary wave solution Eq. (3.3)
of KdV equation, (b) Potential field with c1 = k1 = l1 = a0 = 1,
along z = 0, (c) density plot of (a) and (d) density plot of (b).

(k3
1 +k3

2)t) and Υ3 = k1c1exp(k1x−k3
1t)+k2c2exp(k2x−k3

2t)+ (k1−k2)2

a0(k1+k2)c1c2exp((k1 +

k2)x− (k3
1 + k3

2)t); a0, k1, k2, c1, c2 are constants.

Similarly, we can obtain the three wave soliton solution which is also retaining the
nature of soliton and getting no new phenomena and so we avoid these.

Observing figures and density plot of the multi-solutions of the KdV equations, we
see that the solutions are completely elastic after collision. That is, before ( t < 0 )
and after (t > 0 ) collision of the wave density and direction remain same except at
phase shift t = 0.
Remark: All of the solutions available in this paper have been checked with the help
of Maple 13 and we observe that they satisfy the corresponding original equation.
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Figure 5. (a) Profile of three solitary wave fusion solution Eq. (3.5)
of KdV equation, (b) Corresponding potential field with c1 = k1 =
c2 = a0 = 1, k2 = −1.5, along z = 0, (c) density plot of (a) and (d)
density plot of (b).

4. Conclusion

We used direct rational exponential scheme to investigate elastic and non-elastic
multi-soliton solution for the Calogero Bogoyavlenskii Schiff equation and KdV equa-
tion. Elastic solitons are found after and before collision between two or three
solitons of the Calogero Bogoyavlenskii Schiff equation and KdV equation when
aij 6= 0, (i, j = 1, · · · , 3). The three dimensional surfaces are provided to visualize
the real shape of the elastic solutions and corresponding potential energies.
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