تعداد نشریات | 44 |
تعداد شمارهها | 1,301 |
تعداد مقالات | 15,907 |
تعداد مشاهده مقاله | 52,157,738 |
تعداد دریافت فایل اصل مقاله | 14,927,813 |
بررسی تأثیر عملیات سطحی و افزودن نانوذرات بر خواص مکانیکی چندلایههای الیافی فلزی با استفاده از روش رویه پاسخ | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 36، دوره 48، شماره 3، آبان 1397، صفحه 329-338 اصل مقاله (3.19 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مسلم نجفی1؛ رضا انصاری خلخالی* 2؛ ابوالفضل درویزه3 | ||
1دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
3استاد، گروه مهندسی مکانیک، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
در این مقاله، تأثیر فرآیندهای مختلف عملیاتسطحی و افزودن نانورس بر خواص مکانیکی چندلایههای الیافی فلزی مورد بررسی قرار گرفته است. به این منظور، آلیاژ 3105 آلومینیوم تحت فرآیندهای مختلف آمادهسازی شامل چربیزدایی، سایش مکانیکی، سونش شیمیایی، کروماتهکردن و ترکیبی از این فرآیندها مورد عملیاتسطحی قرار گرفت. سپس چندلایههای الیافی فلزی با استفاده از ورقهای آلومینیوم، رزین اپوکسی خالص و بهبودیافته با نانورس و الیاف شیشه توسط روش لایهگذاری دستی تولید شدند. تأثیر فرآیندهای مختلف آمادهسازی سطح و استفاده از نانوذرات بر خواص خمشی و ضربهای نمونهها با بهرهگیری از طراحی آزمایشها به روش رویه پاسخ مورد بررسی قرار گرفت. نتایج بهدستآمده نشان داد که کروماتهکردن سطح فلز مؤثرترین نقش را در افزایش خواص مکانیکی نمونهها دارد. درحالیکه چربیزدایی در بین فرآیندهای مختلف آمادهسازی سطوح، کمترین اثر را در بهبود خواص مکانیکی چندلایههای الیافی فلزی دارا است. همچنین بررسی نتایج تحلیل عوامل تأثیرگذار اصلی نشان داد که بهرغم نقش مفید نانورس در بهبود خواص مکانیکی چندلایههای الیافی فلزی، نقش فرآیندهای آمادهسازی سطح مؤثرتر از افزودن نانوذرات است. | ||
کلیدواژهها | ||
چندلایه های الیافی فلزی؛ عملیات سطحی؛ نانورس؛ خواص ضربه ای؛ خواص خمشی | ||
مراجع | ||
[1] Vogelesang L. B., and Vlot A., Development of fibre metal laminates for advanced aerospace structures. Journal of Material Process and Technology, Vol. 103, No. 1, pp. 1-5, 2000. [2] Alderliesten R. C., and Benedictus R., Fiber/metal composite technology for future primary aircraft structures. Journal of Aircraft, Vol. 45, No. 4, pp. 1182-1189, 2008. [3] Vlot A., Impact loading on fibre metal laminates. International Journal of Impact Engineering, Vol. 18, No. 3, pp. 291–307, 1996. [4] Truong H. T., Lagoudas D. C., Ochoa O. O., and Lafdi K., Fracture toughness of fiber metal laminates: Carbon nanotube modified Ti–polymer–matrix composite interface. Journal of Composite Materials, Vol. 0, No. 0, pp. 1-14, 2013. [5] Lee S., Kim D., Kim Y., Jung U., and Chung W., Effect of aluminum anodizing in phosphoric acid electrolyte on adhesion strength and thermal performance. Metals and Materials International, Vol. 22, No. 1, pp 20–25, 2016. [6] Sinmazçelik T., Avcu E., Bora M. O., and Çoban O., A review: Fibre metal laminates, background, bonding types and applied test methods. Materials and Design, Vol. 32, pp. 3671–3685, 2011. [7] Yun I. H., Kim W. S., Kim K. H., Jung J. M, Lee J. J., and Jung H. T., Highly enhanced interfacial adhesion properties of steel-polymer composites by dot-shaped surface patterning. Journal of Applied Physicals, Vol. 109, No. 7, pp. 074302, 2011. [8] Alfano M., Lubineau G., Furgiuele F., and Paulino G. H., Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints. International Journal of Adhesion & Adhesives, Vol. 39, pp. 33-41, 2012. [9] Brown J. M., Curliss D., and Vaia R. A., Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chemistry of Materials, Vol. 12, No. 11, pp. 3376-3384, 2000. [10] Alamri H., and Low I. M., Effect of water absorption on the mechanical properties of nano-filler reinforced epoxy nanocomposites. Materials & Design, Vol. 42, pp. 214-222, 2012. [11] Haque A., Shamsuzzoha M., Hussain F., and Dean D., S2-glass/epoxy polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. Journal of Composite Materials, Vol. 37, No. 10, pp. 1821-1837, 2003. [12] پل محمد حسین.، لیاقت غلام حسین.، مهربانی یگانه عرفان. و افروزیان علی.، بررسی تجربی تأثیر نانو ذرات رس و سیلیکا در خواص مکانیکی مواد مرکب شیشه/ اپوکسی. نشریه علمی پژوهشی مدرس، د. 44، ش. 16، ص 76-82، 1393. [13] کبودوند عماد.، اسلامی فارسانی رضا.، و خسروی حامد.، اثر افزودن نانولولههای کربنی چند جداره عاملدار بر رفتار خمشی سازههای کامپوزیتی الیاف-فلز. دومین کنفرانس بینالمللی دستاوردهای نوین پژوهشی در مکانیک، صنایع و هوافضا، تهران، ایران، 1395. [14] Zhang H., Gn S. W., An J., Xiang Y., Yang J. L., Impact behaviour of GLAREs with MWCNT modified epoxy resins. Experimental Mechanics, Vol. 54, No. 1 pp. 83-93, 2014. [15] Ning H., Improvement on interlaminar mechanical properties of carbon fiber reinforced plastic and fiber metal laminates, MSc. Thesis, Chiba University, 2015. [16] Critchlow G. W., Yendall K. A., Bahrani D., Quinn A., and Andrews F., Strategies for the replacement of chromic acid anodising for the structural bonding of aluminium alloys. International Journal of Adhesion and Adhesives, Vol. 26, pp. 419-53, 2006. [17] Bas D., and Boyaci I. H., Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, Vol. 78, No. 3, pp. 836-845, 2007. [18] Agubra V. A., Owuor P. S., and Hosur M. V., Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomaterials, Vol. 3, pp. 550-563, 2013. [19] Kusmono K., Wildan M. W., and Mohd Ishak Z. A., Preparation and properties of clay-reinforced epoxy. International Journal of Polymer Science, Vol. 2013, pp. 1-7, 2013. | ||
آمار تعداد مشاهده مقاله: 21,231 تعداد دریافت فایل اصل مقاله: 611 |