تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,490,001 |
تعداد دریافت فایل اصل مقاله | 15,217,509 |
اثر نوسان یک رشته ی الاستیک پشت استوانه صلب بر کاهش ضریب پسآ در جریان سیال تراکمناپذیر: روش مرز غوطه ور-شبکه بولتزمن-شبکه فنر | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 27، دوره 48، شماره 3، آبان 1397، صفحه 241-250 اصل مقاله (2.15 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
هادی گریوانی1؛ محسن نظری* 2؛ پوریا اکبرزاده2 | ||
1کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
چکیده | ||
تحقیق حاضر یک حل عددی از تقابل سازهی الاستیک-سیال تراکم ناپذیر با استفاده از روش مرز غوطهور است، که در آن فاز جامد یک رشته الاستیک قرار گرفته پشت یک استوانه صلب در جریان سیال است. هدف، بررسی اثرات متقابل این رشته و استوانه بر یکدیگر و به طور خاص اثر رشته الاستیک بر کاهش ضریب پسآی استوانه است. در روش مرز غوطهور، فاز جامد و سیال در دو ناحیه مجاز از هم حل میشوند. برای حل جریان و مومنتوم فاز سیال از معادلات شبکه بولتزمن استفاده شده است. در تحقیق حاضر رشته الاستیک برخلاف تحقیقات گذشته بدون نیاز به حل معادلات ساختاری پیوسته جامد الاستیک، به صورت یک شبکه از جرم های متمرکز و المانهای فنر که میتواند خواصی چون مدول الاستیسیته و صلبیت خمشی رشته الاستیک را پوشش دهد، مدل شده و با روش مرز غوطهور با حل جریان مرتبط است. نتایج نشان داده است که جرم، هندسه و محل قرار گیری رشته پشت استوانه صلب، بر پایداری و کاهش ضریب پسآی آن اثر گذار است. اثبات وجود یک نقطه کمینه ضریب پسآ و تحلیل آن به عنوان دیگر زمینه تفاوت این تحقیق با تحلیلهای پیشین محسوب میشود. | ||
کلیدواژهها | ||
مرز غوطهور؛ شبکه بولتزمن؛ شبکه فنر؛ رشته الاستیک؛ استوانه صلب؛ ضریب پسآ | ||
مراجع | ||
[1] Wassarman P. M., "Contribution of mouse egg zona pellucida glycoproteins to gamete recognition during fertilization", J.Cell. Physiol. 204 388–391 2005. [2] Talbot P., DiCarlantonio G., Zao P., Penkala J., Haimo L. T., "Motile cells lacking hyaluronidase can penetrate the hamster oocyte cumulus complex", Dev. Biol. 108 387–398 1985. [3] Svitkina T. M., Borisy G. G., "Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia", J. Cell Biol. 145 1009–1026 1999. [4] Schuster B. S., Suk J. S., Woodworth G. F., Hanes J., "Nanoparticle diffusion in respiratory mucus from humans without lung disease", Biomaterials 34 3439-3446 2013. [5] R. Mittal., G. Iaccarino., "IMMERSED BOUNDARYMETHODS", Annu. Rev. Fluid Mech. 37 239-261 2005. [6] Peskin CS., "Flow patterns around heart valves - numerical method", Journal of Computational Physics 10 252-271 1972. [7] Peskin CS., "Numerical analysis of blood flow in the heart", Journal of Computational Physics 25 220-252 1977.
[8] Lai MC., Peskin CS., "An immersed boundary method with formal second-order accuracy and reduced numerical viscosity", Journal of Computational Physics 160 705-719 2000. [9] Goldstein D., Handler R., Sirovich L., "Modeling a no-slip flow boundary with an external force-field", Journal of Computational Physics 105 354-366 1993. [10] Saiki EM., Biringen S., "Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method", Journal of Computational Physics 123 450-465 1996. [11] Mohd-Yusof J., "Combined immersed boundaries/B-spline methods for simulations of flows in complex geometries", CTR Annual Research Briefs, NASA Ames/Stanford University, Stanford, CA, 1997. [12] Fadlun EA., Verzicco R., Orlandi P., Mohd-Yusof J,. "Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations", Journal of Computational Physics 161 35-60 2000. [13] Kim J., Kim D., Choi H., "An immersed-boundary finite-volume method for simulations of flow in complex geometries", Journal of Computational Physics 171 132-150 2001. [14] Chen S., Doolen G. D., " Lattice Boltzmann Method For Fluid Flows", Annu. Rev. Fluid Mech. 30 329 1998. [15] Yu D., Mei M. R., Luo L. S., Shyy W., " Viscous flow computations with the method of lattice Boltzmann equation", Prog. Aerosp. Sci 39 329–367 2003. [16] Benzi R., Succi S., Vergassola M., " The lattice Boltzmann equation: theory and applications",Phys. Rep. 222 145-197 1992.
[17] Mussa A., Asinari P., Luo L. S., " Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders", J. Comput. Phys. 228, 983–999 2009. [18] X. Ku And J. Lin, " Numerical Simulation Of The Flows Over Two Tandem Cylinders By Lattice Boltzmann Method", Mod. Phys. Lett. B. 19 1551 2005. [19] Kang Shin K., Yassin Hassan A., " A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries", Int. J. Numer. Meth. Fluids 66 1132–1158 2011. [20] Zhou Q., Fan LS., "A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows", Journal of Computational Physics 268 269–301 2014. [21] Favier J., Revell A., Pinelli A. A., "Lattice Boltzmann–Immersed Boundary method to simulate the fluid interaction with moving and slender flexible objects", Journal of Computational Physics 261 145–161 2014. [22] Sui Y., Chew Y. T., Roy P., Chen X. B., Low H. T., "Transient deformation of elastic capsules in shear flow: Effect of membrane bending stiffness", PHYSICAL REVIEW E 75 066301 2007. [23] Sui Y., Chew Y. T., "A Lattice Boltzmann Study On The Largedeformation Of Red Blood Cells In Shear Flow", [24] Techet A. H., Hover F. S., Triantafyllou M. S., "Separation and turbulence control in biomimetic flows", Flow, Turb. Combust. 24 715–734 1997. [25] Connell B. S. H., "Numerical investigation of the flow-body interaction of thin flexible foils and ambient flow", PhD thesis, Massachusetts Institute of Technology, Cambridge, MA 2006. [26] Gray J., "Studies in animal locomotion. I. The movement of fish with special reference to the eel", J. Expl Biol. 10 88–104 1933. [27] Coene R., "Flutter of slender bodies under axial stress", Appl. Sci. Res. 49 175–187 1992. [28] Zhang J., Childress S., Libchaber A., Shelley M., "Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind", Nature 408 835 2000. [29] Connell Benjamin. S. H., Yu Dick. K. P., "Flapping Dynamics Of A Flag In A Uniform Stream", Journal Of Fluid Mechanics., 581 33- 67 2007. [30] Shelley M., Childress S., Zhang J., "Inertia dynamics of filaments, manuscript in preparation". [31] Luoding Zhu., Peskin Charles S., " Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method", Journal of Computational Physics 179 452–468 2002. [32] Tian Fang-Bao., Luo Haoxiang., Zhu Luoding., Liao James C., Lu Xi-Yun, " An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments", Journal of Computational Physics 230 7266–7283 2011. [33] Yu Zhaosheng., " A DLM/FD method for fluid/flexible-body interactions", Journal of Computational Physics 207 1–27 2005. [34] Monette L., Anderson M. P., " Elastic and fracture properties of the two-dimensional triangular and square lattices", Madelling Simul. Mater. Sci. Eng. 2 53-66 1994. [35] Buxton Gavin. A., Care Christopher. M., Cleaver Douglas. J., " A lattice spring model of heterogeneous materials with Plasticity", Modelling Simul. Mater. Sci. Eng. 9 485–497 2001. [36] Buxton GA., Verberg R., Jasnow D., Balazs AC., "Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice–spring models", Physical Review E 71 056707 2005. [37] Dupin M., Halliday I., Care C., Alboul L., Munn L., "Modeling the flow of dense suspensions of deformable particles in three dimensions", Physical Review E 75 066707 2007. [38] Jingshu Wu., Aidun Cyrus K., " Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force", Int. J. Numer. Meth. Fluids 62 765–783 2010. [39] Bhatnagar PL., Gross EP., Krook M., A "model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems", Phys Rev 94 511–525 1954. [40] Amiri Delouei A., Nazari M., Kayhani M. H., Succi S., "Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary–thermal lattice Boltzmann method", PHYSICAL REVIEW E 89 053312-053313 2014. [41] Amiri Delouei, A., Nazari M., Kayhani M.H., Ahmadi G,. "A non-Newtonian direct numerical study for stationary and moving objects with various shapes: An immersed boundary–Lattice Boltzmann approach", Journal of Aerosol Science 93 45-62 (2016). [42] Amiri Delouei, A., Nazari M., Kayhani M.H., Kang S.K., Succi S., "Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann approach", Physica A: Statistical Mechanics and its Applications 447 1-20 (2016). [43] Guo Z., Zheng C., Shi B., "Discrete lattice effects on the forcing term in the lattice Boltzmann method", Phys Rev E65 046308 2002. [44] Peskin C. S., " The immersed boundary method", Acta Numerica 11 479-517 2002. [45] Zou Qisu., He Xiaoyi., "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model", Phys. Fluids 9 1591 1997. [46] Beal D.N., Hover F.S., Triantafyllou M.S., Liao J.C., Lauder G.V., "Passive propulsion in vortex wakes", J. Fluid Mech, 549 385–402 2006. [47] Jia L.B., Yin X.Z., "Response modes of a flexible filament in the wake of a cylinder in a flowing soap film", Phys. Fluids 21 101704 2009. [48] Zhu L., Peskin C.S., "Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method", J. Comput. Phys. 179 452–468, 2002. [49] Shelley M., Vandenberghe N., Zhang J., "Heavy flags undergo spontaneous oscillations in flowing water, Phys. Rev. Lett, 94 094302 2005. [50] Connell B.S.H., Yue D.K.P., "Flapping dynamics of a flag in a uniform stream", J. Fluid Mech., 581 33–67 2007. [51] Schouveiler L., Eloy C., "Coupled flutter of parallel plates", Phys. Fluids 21 081703 2009. [52] Shi X., Phan-Thien N., "Distributed lagrange multiplier/fictitious domain method in the framework of lattice Boltzmann method for fluid-structure Interactions", J. Comput. Phys., 206 81–94 2005. [53] Gao T., Tseng Y.H., Lu X.Y., "An improved hybrid cartesian/immersed boundary method for fluid-solid flows", Int. J. Numer. Meth. Fluids., 55 1189–1211 2007. [54] Lima A.L.F., Silveira-Neto A., Damasceno J.J.R., "Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method", J. Comput. Phys. 189 351–370 2003. [55] Xu S., Wang Z.J., "An immersed interface method for simulating the interaction of a fluid with moving boundaries", J. Comput. Phys. 216 454–493 2006.
| ||
آمار تعداد مشاهده مقاله: 283 تعداد دریافت فایل اصل مقاله: 338 |