تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,071 |
تعداد دریافت فایل اصل مقاله | 15,624,734 |
Stable Gaussian radial basis function method for solving Helmholtz equations | ||
Computational Methods for Differential Equations | ||
مقاله 12، دوره 7، شماره 1، فروردین 2019، صفحه 138-151 اصل مقاله (1.35 M) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Jalil Rashidinia* ؛ Manoochehr Khasi | ||
School of Mathematics, Iran University of Science and Technology, Tehran, Iran | ||
چکیده | ||
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for solving Helmholtz equations. In this paper, the eigenfunction expansions are rebuilt based on Chebyshev polynomials which are more suitable in numerical computations. Numerical examples are presented to demonstrate the effectiveness and robustness of the proposed method for solving two-dimensional Helmholtz equations. | ||
کلیدواژهها | ||
Gaussian radial basis functions؛ Eigenfunction expansion؛ Helmholtz equations؛ Sylvester system | ||
آمار تعداد مشاهده مقاله: 497 تعداد دریافت فایل اصل مقاله: 1,120 |