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Abstract In this paper, a modification of the finite integration method (FIM) is combined

with the radial basis function (RBF) method to solve a time-fractional convection-
diffusion equation with variable coefficients. The FIM transforms partial differential
equations into integral equations and this creates some constants of integration.

Unlike the usual FIM, the proposed method computes constants of integration by
using initial conditions. This leads to fewer computations rather than the standard
FIM. Also, a product Simpson method is used to overcome the singularity included in
the definition of fractional derivatives, and an integration matrix is obtained. Some

numerical examples are provided to show the efficiency of the method. In addition,
a comparison is made between the proposed method and the previous ones.
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1. Introduction

Fractional order differential equations are used in modeling of many phenomena
in engineering, chemistry, physics, finance, and other disciplines, see [8, 14, 19] and
the references therein. Note that most fractional order differential equations do not
have solutions in a closed form. So it is important to propose new methods for
finding numerical solutions of these equations. Recently, several numerical methods
have been developed to solve fractional partial differential equations (FPDEs) such as
generalized fractional-order Legendre functions [5], Finite Difference Method (FDM)
[13], compact finite difference method [7], Chebyshev wavelets collocation method
[30], operational method [18], homotopy perturbation method [28], and many others.
One of the examples of FPDEs is time-fractional order convection-diffusion equations
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(TFCDEs), which are obtained from the classical diffusion equations. It used to
simulate super-diffusive flow processes [2].

Some techniques presented so far for numerical solutions of TFCDEs are com-
pact difference method [20,23], Galerkin method [22], Chebyshev wavelets collocation
method [30], Jacobi polynomials [3], and operational method [1, 27].

In this paper, we consider the following time-fractional convection-diffusion equa-
tion with variable coefficients

∂αu(x, t)

∂tα
+ a(x)

∂u(x, t)

∂x
+ b(x)

∂2u(x, t)

∂x2
= f(x, t),

0 < x < 1, 0 < t ≤ 1,

and the following initial and boundary conditions

u(x, 0) = g(x), 0 < x < 1,

u(0, t) = h0(t), u(1, t) = h1(t), 0 ≤ t ≤ 1,

where nonzero functions a(x) and b(x) are continuous. Here the time-fractional de-
rivative of order 0 < α < 1 is defined in the Caputo sense as the following

∂αf(x, t)

∂tα
=

1

Γ(m− α)

∫ t

a

(t− τ)m−1−α ∂
mf(x, τ)

∂τm
dτ, m = ⌈α⌉.

Radial basis function method (RBF) is an effective tool in multi-variable approxi-
mation theory that can be used in any arbitrary space dimensions [4, 11, 26]. The
motivation for RBF method originates from R. Hardy [12]. The main advantage of
RBF method as a meshless method, is to eliminate known deficiencies of the mesh-
based approaches (see for example [4, p. 39] and [10, p. 1]).

The Finite Integration Method (FIM) is an integral based technique, and was first
introduced by Weiland in 1977 [24]. In recent years, there has been an increasing
amount of literature on developing FIM with RBFs for solving partial differntial
equations (PDEs), see for example [15, 17, 25, 29]. The FIM converts a PDE into
an integral equation that gives much higher accurate approximations than the Finite
Difference Method (FDM), Finite Element Method (FEM), and Point Collocation
Method (PCM) [15–17].

In this paper, an improved FIM is developed for solving time-fractional convection-
diffusion equations with variable coefficients. The constants of integration are deter-
mined by using initial conditions, while in the previous studies of FIM, interpolation
methods were used. Also, the integration matrix of the singular integral in the defi-
nition of the fractional derivative is obtained by product Simpson’s rules. The field
points are generated uniformly along the t coordinate and the roots of the Legendre
polynomials are used along the x coordinate. To demonstrate the accuracy and effi-
ciency of the improved FIM, numerical examples are given.

The outline of this paper is organized as follows: The basics of FIM are described in
section 2. Section 3 is devoted to computation of matrix of integration for a singular
integral. In section 4, combination of FIM and RBF is described. In section 5, we
used FIM based on RBF to solve some fractional convectional-diffusion equations.
Numerical examples are included in 6 and a conclusion is provided in 7.
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2. Finite integration method

Consider an integral of one-dimension function f(x) in the region [0, x]:

F (1)(x) :=

∫ x

0

f(t)dt, x ∈ [0, b]. (2.1)

By applying linear interpolation technique, which uses trapezoidal rule, we have

F (1)(xk) =

∫ xk

0

f(t)dt =

k∑
i=1

∫ xi+1

xi

f(t)dt

≈
k∑

i=1

h

2
(f(xi) + f(xi+1)) =

k∑
i=1

a
(1)
ki f(xi), (2.2)

where

a
(1)
1i = 0,

a
(1)
ki =


h
2 , i = 1,

h, i = 2, . . . , k − 1,
h
2 , i = k,

0, i > k,

and xi = (i − 1)h, h = b−0
N−1 , i = 1, 2, .., N , are nodal points in the region [0, b], and

x1 = 0, xN = b.
Note that integration (2.2) can be written in a matrix form as

F(1) = A(1)f , (2.3)

where

F(1) = [F
(1)
1 , F

(1)
2 , . . . F

(1)
k ]T , F

(1)
i = F (1)(xi),

f = [f1, f2, . . . fk]
T , fi = f(xi),

and the first order integration matrix

A(1) := [a
(1)
ki ] = h



0 0 0 0 0 0

1/2 1/2 0 0 0 0

1/2 1 1/2 0 0 0

1/2 1 1 1/2
. . .

...

...
...

...
. . .

. . . 0

1/2 1 1 . . . 1 1/2


N×N

. (2.4)

Similarly, consider a double-layer integral of f(x) from 0 to x:

F (2)(x) :=

∫ x

0

∫ η

0

f(ξ)dξdη, x ∈ [0, b], (2.5)
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and apply the trapezoidal rule again for integral function F (2)(x), we have

F (2)(xk) =

∫ xk

0

∫ η

0

f(ξ)dξdη ≈
k∑

i=1

a
(1)
ki

∫ xi

0

f(η)dη

≈
k∑

i=1

i∑
j=1

a
(1)
ki a

(1)
ij f(xj) =

k∑
i=1

a
(2)
ki f(xi), (2.6)

This double-layer integral can be written again in a matrix form as

F(2) = A(2)f =
(
A(1)

)2

f , (2.7)

where F(2) = [F
(2)
1 , F

(2)
2 , . . . F

(2)
k ]T , F

(2)
i = F (2)(xi), and A(2) is the double layer

integration matrix and can be derived from A(1).
For two-dimensional case, consider a uniform distribution of M = N1×N2 colloca-

tion points in the problem domain, where N1 and N2 are the total number of columns
and rows, respectively.

Similar to Eqs. (2.1) and (2.5), we define

F (1)
x (x, y) :=

∫ x

0

f(t, y)dt, (2.8)

F (2)
x (x, y) :=

∫ x

0

∫ η

0

f(ξ, y)dξdη, (2.9)

where k = N1 × (j − 1) + i is the total number of points at the ith column and the
jth row of the domain. The subscript x is used to show that the integration is with
respect to x and the variable y is considered to be constant.

Similarly, the values of integration in Eqs. (2.8) and (2.9), in nodal points (xk, yk),
i.e.

F (1)
x (xk, yk) :=

∫ xk

0

f(t, yk)dt,

F (2)
x (xk, yk) :=

∫ xk

0

∫ η

0

f(ξ, yk)dξdη,

can be expressed in matrix form as

F(1)
x = A(1)

x f , F(2)
x =

(
A(1)

x

)2

f ,

where

F(m)
x = [F (m)

x (x1, y1), F
(m)
x (x2, y2), . . . F

(m)
x (xM , yM )]T , m = 1, 2,

f = [f(x1, y1), f(x2, y2), . . . f(xM , yM )]T ,
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A(1)
x =


A(1) 0 . . . 0

0 A(1) 0 0

...
...

. . .
...

0 0 0 A(1)


N1×N2

, (2.10)

and A(1) is the first order integration matrix given in (2.4).
Similar relations for the first and the second order integration along y axis can be

computed.

3. First order integration matrix for singular integrals

In this section, the first order integration matrix is constructed for computing a
class of singular integrals as following

I(t) =

∫ t

0

u(t, s)

(t− s)α
ds, 0 ≤ t ≤ T, (3.1)

where u(t, s) is a well-behaved function. Here we use a high order product integration
method, based on Simpson’s method to approximate singular integral (3.1). Sufficient
conditions for the convergence of the method is investigated in [9].

Let N ≥ 1 be an integer, h = (T − 0)/N , and consider the grid points ti = ih,
i = 0, 1, ..., N . The method, approximate the integral (3.1) over [0, ti], by using
repeatedly the product Simpson’s rule, if i is even. When i is odd, we use the product
Simpson’s rule over [0, ti−3] and the product 3

8 rule over [ti−3, ti]. Thus, integral (3.1)
is approximated by a quadrature formula in the following form∫ ti

0

u(ti, s)

(ti − s)α
ds ≈

i−2
2∑

j=0

2∑
k=0

bk(2j)u(ti, s2j+k),

when i is even, and∫ ti

0

u(ti, s)

(ti − s)α
ds ≈

i−5
2∑

j=0

2∑
k=0

bk(2j)u(ti, s2j+k) +
3∑

k=0

dku(ti, si+k−3),

when i is odd, in which sj = tj for j = 0, ..., N , and weights are computed by

b0(j) =
1

2hα−1

∫ 2

0

(v − 1)(v − 2)

(i− j − v)α
dv,

b1(j) = − 1

hα−1

∫ 2

0

v(v − 2)

(i− j − v)α
dv,

b2(j) =
1

2hα−1

∫ 2

0

v(v − 1)

(i− j − v)α
dv,
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and

d0 = − 1

6hα−1

∫ 3

0

(v − 1)(v − 2)(v − 3)

(3− v)α
dv,

d1 =
1

2hα−1

∫ 3

0

v(v − 2)(v − 3)

(3− v)α
dv,

d2 = − 1

2hα−1

∫ 3

0

v(v − 1)(v − 3)

(3− v)α
dv,

d3 =
1

6hα−1

∫ 3

0

v(v − 1)(v − 2)

(3− v)α
dv.

For i = 1, we use the product trapezoidal rule, and we get∫ t1

0

u(ti, s)

(ti − s)α
ds ≈ w0u(t1, s0) + w1u(t1, s1),

where

w0 =
1

hα−1

∫ 1

0

1− v

(1− v)α
dv, w1 =

1

hα−1

∫ 1

0

v

(1− v)α
dv.

Therefore, the first order integration matrix for singular integral (3.1), has the form

Aα =



0
w0 w1

b0(0) b1(0) b2(0)
d0 d1 d2 d3

b0(0) b1(0) b2(0) + b0(2) b1(2) b2(2)
b0(0) b1(0) b2(0) + d0 d1 d2 d3
b0(0) b1(0) b2(0) + b0(2) b1(2) b2(2) + b0(4) b1(4) b2(4)
b0(0) b1(0) b2(0) + b0(2) b1(2) b2(2) + d0 d1 d2 d3

.

.

.
.
.
.

 .

4. The FIM with radial basis functions

Since RBF is a meshless method, we replace the linear interpolation in section 2
by RBF interpolation.

Based on RBF method, a function u(x, t) at a point x = (x, t), is approximated
by:

u(x) ≈
M∑
i=1

αiRi(x) +

Q∑
j=1

βjPj(x) = RT (x)α+PT (x)β, (4.1)

where R(x) = [R1(x), R2(x), . . . , RM (x)]T is a set of RBFs with centers xi = (xi, ti),
i = 1, 2, . . . ,M , α = [α1, α2, . . . , αM ]T and β = [β1, β2, . . . , βM ]T are unknown coeffi-
cients to be determined, Pj(x), j = 1, 2, . . . , Q, are monomials in the space coordinate
x = (x, t), and Q is the number of polynomial basis functions. For the linear basis
functions, PT (x) in Eq. (4.1) is

PT (x) = {1, x, t}, Q = 3,

and for the quadratic basis functions, we have

PT (x) = {1, x, t, x2, t2, xt}, Q = 6.
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Since in Eq. (4.1) there are M+Q unknown variables, to guarantee the uniqueness
of the approximation, the polynomial terms PT (x) satisfies the following additional
requirements

M∑
i=1

αiPj(xi) = 0, j = 1, 2, . . . , Q. (4.2)

It can be written in matrix form

PT
0 α = 0. (4.3)

By collocating Eq. (4.1) at points xi = (xi, ti), i = 1, 2, . . . ,M , we have

RT
0 α+PT

0 β = u, (4.4)

where

RT
0 =


R1(x1) R2(x1) . . . RM (x1)
R1(x2) R2(x2) . . . RM (x2)

...
... · · ·

...
R1(xM ) R2(xM ) . . . RM (xM )

 , (4.5)

PT
0 =


P1(x1) P2(x1) . . . PQ(x1)
P1(x2) P2(x2) . . . PQ(x2)

...
... · · ·

...
P1(xM ) P2(xM ) . . . PQ(xM )

 , (4.6)

and u = [u(x1), u(x2), . . . , u(xM )]. Solving linear system (4.3) and (4.4) gives

α = R−1
0

(
I−P0(P

T
0 R

−1
0 P0)

−1PT
0 R

−1
0

)
u, (4.7)

β = (PT
0 R

−1
0 P0)

−1PT
0 R

−1
0 u, (4.8)

where I denotes the identity matrix.
By substituting the coefficients α and β from (4.7) and (4.8) into (4.1), we have

the approximation of u(x), in terms of the nodal values ui as follow

u(x) ≈
(
RT (x)R−1

0

(
I−P0(P

T
0 R

−1
0 P0)

−1PT
0 R

−1
0

)
+

PT (x)(PT
0 R

−1
0 P0)

−1PT
0 R

−1
0

)
u =

M∑
i=1

ϕi(x)ui, (4.9)

where ϕi(x) is the shape function. By differentiating from Eq. (4.1) and using Eq.
(4.9), we have

∂u(x)

∂x
≈

M∑
i=1

αi
∂Ri(x)

∂x
+

Q∑
j=1

βj
∂Pj(x)

∂x
=

M∑
i=1

ϕi,x(x)ui, (4.10)

or in matrix form, ux = Dxu.
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For the Multi-Quadric RBF (MQ), Ri(x, t) =
√
(x− xi)2 + (t− ti)2 + c2, where c

is the shape parameter, we can easily obtain the first derivative as

∂Ri(x, t)

∂x
=

x− xi√
(x− xi)2 + (t− ti)2 + c2

. (4.11)

Also, the first order integration of u(x) is approximated as

U (1)
x (x) :=

∫ x

0

u(x)dx ≈
M∑
i=1

αiR̄i,x(x) +

Q∑
j=1

βjP̄j,x(x) =
M∑
i=1

ϕ̄
(1)
i,x(x)ui,

(4.12)

where

R̄i,x(x) =

∫ x

0

Ri(x)dx, P̄j,x(x) =

∫ x

0

Pj(x)dx,

ϕ̄
(1)
i,x(x) =

∫ x

0

ϕi,x(x)dx,

and the first order integration formula with respect to x, for the MQ-RBF is computed
by ∫ x

0

Ri(η, t)dη =
1

2

(
c2 + (t− ti)

2
)
×

ln
(
x− xi +

√
(x− xi)2 + (t− ti)2 + c2

)
− 1

2

(
c2 + (t− ti)

2
)
ln
(
−xi +

√
xi

2 + c2 + (t− ti)2
)

+
xi

2

√
xi

2 + c2 + (t− ti)2 +
x− xi

2

√
(x− xi)2 + (t− ti)2 + c2. (4.13)

Furthermore, for the polynomial basis functions we have

P(x) = {1, x, t, x2, t2, xt, . . .}T , x = (x, t),

∂P(x)

∂x
= {0, 1, 0, 2x, 0, t, . . .}T ,∫ x

0

P(x)dx = {x, x
2

2
, xt,

x3

3
, xt2,

x2

2
t, . . .}T .

Similarly, a double-layer integral of u(x) is defined as

U (2)
x (x) :=

∫ x

0

∫ x

0

u(x)dxdx =
M∑
i=1

αi
¯̄Ri,x(x) +

Q∑
j=1

βj
¯̄Pj,x(x)

=

M∑
i=1

¯̄ϕ
(2)
i,x(x)ui, (4.14)
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in which

¯̄Ri,x(x) =

∫ x

0

∫ x

0

Ri(x)dxdx,
¯̄Pj,x(x) =

∫ x

0

∫ x

0

Pj(x)dxdx,

¯̄ϕ
(2)
i,x(x) =

∫ x

0

∫ x

0

ϕi,x(x)dxdx.

Therefore, Eqs. (4.12) and (4.14) can be written in matrix form as:

U(1)
x (x) := A(1)

x u, U(2)
x (x) := A(2)

x u, (4.15)

where

A(r)
x =


ϕ̄
(r)
1,x(x1) ϕ̄

(r)
2,x(x1) . . . ϕ̄

(r)
M,x(x1)

ϕ̄
(r)
1,x(x2) ϕ̄

(r)
2,x(x2) . . . ϕ̄

(r)
M,x(x2)

...
... · · ·

...

ϕ̄
(r)
1,x(xM ) ϕ̄

(r)
2,x(xM ) . . . ϕ̄

(r)
M,x(xM )

 , r = 1, 2. (4.16)

Analogous relations is hold for derivatives and integrals with respect to t.

5. FIM based on RBFs for Solving Time-Fractional
convection-diffusion Equation

The FIM can be easily extend for solving high dimensional problems. For illustra-
tion, consider the following time-fractional convection-diffusion equation with variable
coefficients

∂αu(x, t)

∂tα
+ a(x)

∂u(x, t)

∂x
+ b(x)

∂2u(x, t)

∂x2
= f(x, t),

0 < x < 1, 0 < t ≤ 1, (5.1)

and the following initial and boundary conditions

u(x, 0) = g(x), 0 < x < 1, (5.2)

u(0, t) = h0(t), 0 ≤ t ≤ 1, (5.3)

u(1, t) = h1(t), 0 ≤ t ≤ 1, (5.4)

where nonzero functions a(x) and b(x) are continuous and g(x), h0(t), and h1(t)
are given functions in L2[0, 1) and f(x, t) is a given function in L2([0, 1) × [0, 1)).
Furthermore, the time-fractional derivative of order 0 < α < 1 is defined in the
Caputo sense.

At first, by using the definition of fractional Caputo derivative in Eq. (5.1) we get

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

1

(t− s)α
ds+ a(x)

∂u(x, t)

∂x

+ b(x)
∂2u(x, t)

∂x2
= f(x, t), (5.5)
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By twice integrating of Eq. (5.1) with respect to x, and using integration by part,
and then rearranging the terms, we obtain

1

Γ(1− α)

∫ x

0

∫ η

0

∫ t

0

∂u(ξ, s)

∂s

1

(t− s)α
dsdξdη

−
∫ x

0

∫ η

0

(a′(ξ)− b′′(ξ))u(ξ, t)dξdη

+

∫ x

0

(a(η)− 2b′(η))u(η, t)) dη + b(x)u(x, t)− xb(0)
∂u(x, t)

∂x

∣∣∣∣
x=0

=

∫ x

0

∫ η

0

f(ξ, t)dξdη + (b(0) + xa(0)− xb′(0))u(0, t). (5.6)

Based on RBF method, the solution of Eq. (5.5), u(x, t), at a point xi = (xi, ti),
i = 1, 2, . . . ,M , is approximated by

u(x, t) = u(x) ≈
M∑
i=1

ϕi(x)ui =

M∑
i=1

ϕi(x, t)ui. (5.7)

Now, by substituting (5.7) in (5.6) and applying the finite integration method, we get(
1

Γ(1− α)
A(2)

x Aα
t Dt −A(2)

x (a′ − b′′) +A(1)
x (a− 2b′) + b−Xb(0)D0

x

)
u

= A(2)
x f + (b(0) +Xa(0)−Xb′(0))h0, (5.8)

where

[D0
x]i,j = [ϕi,x(0, tj)]

T ,

f = [f(x1, t1), f(x2, t2), . . . , f(xM , tM )]T ,

h0 = [h(t1), h(t2), . . . , h(tM )]T ,

X = diag[x1, x2, . . . , xM ],

a = diag[a(x1), a(x2), . . . , a(xM )],

a′ = diag[a′(x1), a
′(x2), . . . , a

′(xM )],

and b, b′, and b′′ are defined similar to a and a′.
Moreover, we can write the initial and boundary conditions (5.2) and (5.4) in a matrix
form as follow

g(x) = u(x, 0) ≈
M∑
i=1

ϕi(x, 0)ui, or ϕ(0)u = g, (5.9)

h1(x) = u(1, t) ≈
M∑
i=1

ϕi(1, t)ui, or ϕ1u = h1. (5.10)

Eq. (5.8) with Eqs. (5.9) and (5.10), creates a linear system of equations and can be
solved in terms of unknown values ui, i = 1, 2, . . . ,M .
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6. Numerical Examples

In this section, numerical examples are provided to illustrate the efficiency of this
approach. In all examples, the value of the shape parameter is chosen to be c = 1/Nx.

Example 6.1. Consider the following time-fractional convection-diffusion equation
[30]:

∂αu(x, t)

∂tα
+ x

∂u(x, t)

∂x
+

∂2u(x, t)

∂x2
= 2tα + 2x2 + 2, (6.1)

where 0 < α < 1, with the initial condition u(x, 0) = 0, 0 < x < 1, and the boundary
conditions

u(0, t) =
2Γ(α+ 1)

Γ(2α+ 1)
t2α, u(1, t) = 1 +

2Γ(α+ 1)

Γ(2α+ 1)
t2α, 0 ≤ t ≤ 1,

The exact solution is u(x, t) = x2 + 2Γ(α+1)
Γ(2α+1) t

2α.

Table 1 shows the absolute errors of numerical results, achieved by FIM with MQ-
RBFs, for Nx = Nt = 10 and α = 0.3, 0.5, 0.7. Also, Figure 1 shows the graph of the
absolute errors for Nx = 30, Nt = 15, and α = 0.5. A comparison is made between
the absolute errors obtained by the present method with the Harr wavelet method [6]
and Sinc-Legendre method [21] for α = 0.5 in Table 2.

Table 1. Absolute Errors for Example 6.1, at t = 1 by Nx = Nt = 10.

xi α = 0.3 α = 0.5 α = 0.7
0.0130 6.8226e-04 7.5436e-06 5.7748e-05
0.0675 1.3844e-03 2.2100e-06 9.7319e-04
0.1603 2.4514e-04 1.5987e-05 1.3594e-03
0.2833 6.9608e-04 2.0179e-05 2.2230e-03
0.4256 7.2284e-04 1.4552e-05 2.6108e-03
0.5744 6.1914e-04 1.6345e-05 2.5043e-03
0.7167 3.6897e-04 2.4712e-05 1.9489e-03
0.8397 7.5934e-05 1.0328e-05 1.1247e-03
0.9325 2.3393e-04 2.8730e-05 4.6176e-04
0.9870 2.9617e-04 7.9615e-06 1.9783e-05

Example 6.2. Consider the following time-fractional convection-diffusion equation
[30]:

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
=

(
2

Γ(3− α)
t2−α + 4π2t2

)
sin(2πx), (6.2)

where 0 < α < 1, with the initial condition u(x, 0) = 0, 0 < x < 1, and the boundary
conditions u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 1, The exact solution is u(x, t) =
t2 sin(2πx).
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Table 2. Comparison of Absolute Errors for Example 6.1, for α =
0.5, t = 0.5.

Harr wavelet [6] Sinc-Legendre [21] Present method
xi m = 64 m = 25 Nx = Nt = 10 Nx = 20, Nt = 15

0.1 1.210e-3 6.462e-6 5.5127e-05 1.7417e-05

0.2 1.259e-3 1.578e-5 6.3034e-05 9.1361e-06

0.3 1.865e-3 2.272e-5 2.5286e-05 3.6982e-06

0.4 7.412e-3 2.674e-5 9.7841e-06 5.5253e-08

0.5 1.000e-6 2.759e-5 2.3230e-06 2.0309e-06

0.6 7.460e-3 2.534e-5 6.5798e-06 2.1323e-06

0.7 1.724e-3 2.035e-5 3.6040e-06 4.3969e-07

0.8 4.990e-3 1.320e-5 1.8435e-06 2.6442e-06

0.9 1.678e-2 4.653e-6 6.3126e-05 5.3220e-06

Figure 1. Absolute Error for Example 6.1 by Nx = 30, Nt = 15,
α = 0.5.
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Table 3 shows the absolute errors of numerical results, achieved by FIM with MQ-
RBFs, for Nx = Nt = 15 and α = 0.3, 0.5, 0.7. Also, Figure 2 shows the graph of the
absolute error for Nx = Nt = 15, and α = 0.5. Table 4 shows a comparison between
the absolute errors obtained by the present method with the Chebyshev wavelets [30]
for α = 0.5.
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Table 3. Absolute Errors for Example 6.2, by FIM-RBF method.

xi α = 0.3 α = 0.5 α = 0.7
0.0060 5.2870e-03 5.2375e-03 5.1375e-03
0.0314 6.6530e-03 7.0803e-03 7.9649e-03
0.0759 1.0664e-03 1.3431e-04 1.7973e-03
0.1378 9.6358e-04 2.5440e-03 5.8306e-03
0.2145 7.9222e-04 2.8262e-03 7.0697e-03
0.3029 9.6562e-04 2.9346e-03 7.0582e-03
0.3994 1.0528e-03 2.2557e-03 4.8016e-03
0.5000 1.2604e-03 1.1870e-03 1.0918e-03
0.6006 1.4816e-03 1.3947e-04 2.5852e-03
0.6971 1.6544e-03 4.3188e-04 4.7010e-03
0.7855 1.8245e-03 2.9531e-04 4.6375e-03
0.8622 2.1498e-03 5.2249e-04 2.8054e-03
0.9241 2.5276e-03 1.5729e-03 3.7269e-04
0.9686 2.8134e-03 2.4291e-03 1.6473e-03
0.9940 3.0375e-03 2.9790e-03 2.8591e-03

Table 4. Comparison of Absolute Errors for Example 6.2, for α =
0.5.

Chebyshev wavelets [30] Present method
(xi, ti) k = 2,M = 6 Nx = Nt = 20 Nx = Nt = 30
(0.1,0.1) 2.3839e-5 2.3961e-05 2.8260e-06
(0.2,0.2) 3.6105e-5 5.7397e-07 4.0035e-07
(0.3,0.3) 2.6326e-5 3.8013e-06 2.1145e-07
(0.4,0.4) 1.4284e-5 2.8072e-06 4.1308e-07
(0.5,0.5) 1.9179e-15 1.3523e-05 2.4121e-06
(0.6,0.6) 5.8484e-6 5.4555e-05 1.0361e-05
(0.7,0.7) 1.3371e-5 1.1569e-04 2.1877e-05
(0.8,0.8) 1.0486e-5 1.9818e-04 3.5520e-05
(0.9,0.9) 4.8384e-6 3.3039e-04 7.1919e-05

7. Conclusion

In this paper, a modification of the finite integration method in combination with
the radial basis function method is extended to solve time-fractional convection-
diffusion equation with variable coefficients. By transforming PDEs into integral
equations, by the finite integration method, constants of integration are appeared.
So, the proposed method used initial conditions for determining these constants. This
leads to fewer computations rather than the usual FIM. Also, to overcome the sin-
gularity included in the definition of fractional derivatives, an integration matrix is
obtained by the product Simpson method. The main advantage of FIM is that it
gives much higher accurate approximations than the finite difference method, finite
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Figure 2. Absolute Error for Example 6.2 by Nx = Nt = 15, α = 0.5.

0
1

2

1

4

10-3

6

t

0.5

x

0.5

8

0 0

element method, and point collocation method [15–17]. As the results obtained
from the proposed approach show in Tables, the presented approach is efficient and
reliable. Also, the comparisons with the previous methods show that the proposed
method have enough accurate solutions.
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[28] A. Yıldırım and H. Koçak, Homotopy perturbation method for solving the space-time fractional

advection-dispersion equation, Adv. Water Res., 32(12) (2009), 1711–1716.

[29] Y. Yu, D. Xu, and Y.C. Hon, Reconstruction of inaccessible boundary value in a sideways
parabolic problem with variable coefficients-forward collocation with finite integration method,
Eng. Anal. Bound. Elem., 61(Supplement C) (2015), 78–90.

[30] F. Zhou and X. Xu, The third kind chebyshev wavelets collocation method for solving the

time-fractional convection diffusion equations with variable coefficients, Appl. Math. Comput.,
280(Supplement C) (2016), 11–29.


