- اصغرپور، حسین، و رضازاده، علی (1394). تعیین سبد بهینه سهام با استفاده از روش ارزش در معرض خطر. فصلنامه نظریههای کاربردی اقتصاد،، 2(4)، 93-118.
- راعی، رضا، و پویانفر، احمد (1390). مدیریت سرمایهگذاری پیشرفته. ﺗﻬﺮان. ﺳﺎزﻣﺎن ﻣﻄﺎﻟﻌﻪ و ﺗﺪوﻳﻦ ﻛﺘﺐ ﻋﻠﻮم اﻧﺴﺎﻧﻲ داﻧﺸﮕﺎهﻫﺎ (ﺳﻤﺖ).
- راﻋﻲ، رﺿﺎ، و ﺗﻠﻨﮕﻲ، اﺣﻤﺪ (1383). ﻣﺪﻳﺮﻳﺖ ﺳﺮﻣﺎﻳﻪﮔﺬاری ﭘﻴﺸﺮﻓﺘﻪ. ﺗﻬﺮان: ﺳﺎزﻣﺎن ﻣﻄﺎﻟﻌﻪ و ﺗﺪوﻳﻦ ﻛﺘﺐ ﻋﻠﻮم اﻧﺴﺎﻧﻲ داﻧﺸﮕﺎهﻫﺎ (ﺳﻤﺖ)، 105-142.
- رجبی، مهسا و خالوزاده، حمید (1393). ﻣﻘﺎﻳﺴﺔ ﺑﻬﻴﻨﻪﺳﺎزی ﺳﺒﺪ ﺳﻬﺎم در ﺑﻮرس اوراق ﺑﻬﺎدار ﺗﻬﺮان ﺑﺎ ﺑﻬﺮهﻣﻨﺪی از اﻟﮕﻮرﻳﺘﻢﻫﺎی ﺑﻬﻴﻨﻪﺳﺎزی ﭼﻨﺪﻫﺪﻓﻪ ﺗﻜﺎﻣﻠﻲ. فصلنامه تحقیقات مالی، 16(2)، 253-270.
- ﻋﺒﺪاﻟﻌﻠﻲزاده، ﺷﻬﻴﺮ، و ﻋﺸﻘﻲ، ﺳﻴﻤﻴﻦ (1382). ﻛﺎرﺑﺮد اﻟﮕﻮرﻳﺘﻢ ژﻧﺘﻴﻚ در اﻧﺘﺨﺎب ﻳﻚ ﻣﺠﻤﻮﻋﻪ داراﻳﻲ از ﺳﻬﺎم ﺑﻮرس اوراق ﺑﻬﺎدار. ﻓﺼﻠﻨﺎﻣﻪ ﭘﮋوﻫﺶﻫﺎی اﻗﺘﺼﺎدی، 5(17)، 175-192.
- موشخیان، سیامک، و نجفی، امیرعباس (1394). بهینهسازی سبد سرمایهگذاری با استفاده از الگوریتم چند هدفه ازدحام ذرات برای مدل احتمالی چند دورهای میانگین- نیمواریانس- چولگی. مجله مهندسی مالی و مدیریت اوراق بهادار، 6(23)، 133-147.
- نریمانی، احمد، و نریمانی، رضا (1392). مدیریت سبد دارایی با استفاده ازMATLAB و GAMS. تهران، انتشارات ناقوس.
- ﺗﻘﻮی ﻓﺮد، محمدتقی، و ﻣﻨﺼﻮری، ﻃﺎﻫﺎ و ﺧﻮشﻃﻴﻨﺖ، ﻣﺤﺴﻦ (1386). ارائه ﻳﻚ اﻟﮕﻮرﻳﺘﻢ ﻓﺮااﺑﺘﻜﺎری ﺟﻬﺖ انتخاب ﺳﺒﺪ ﺳﻬﺎم ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻣﺤﺪودﻳﺖﻫﺎی ﻋﺪد ﺻﺤﻴﺢ. ﻓﺼﻠﻨﺎﻣﻪ ﭘﮋوﻫﺶﻫﺎی اﻗﺘﺼﺎدی، 7(4)، 49-69.
- Abdolalizade, Sh., & Eshghi. K (2004). Portfolio optimization using Genetic Algoritm. Journal of Economic Research, 5(17), 175-192 (In Persian).
- Asgharpor. H., & Rezazade. A, (2016). Determining the stock optimal portfolio using value at risk. Applied Theories of Economics, 3(4), 93-118 (In Persian).
- Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems, New York, Oxford University Press.
- Celikyurt. U, & Ozekici. S (2007). Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach. European Journal of Operational Research (179), 186–202.
- Clerc, M. (2006). Particle swarm optimization.London, ISTE.
- Chang, T., Meade, N., & Sharaiha, J. (2000). Heuristics for cardinality constrained portfolio optimization. Computers & Operations Research 27: 1271–1302.
- Coello, C.A.C., & Lechuga, M.S. (2002). MOPSO, A Proposal for multiple objective particle swarm optimization. Congress on Evolutionary Computation (CEC’2002), Vol. 2, 1051–1056.
- Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In proceedings of parallel problem solving from nature - PPSN VI, Springer 849–858.
- Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Chichester, UK.
- Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence. Hoboken, NJ: Wiley
- Fernandez, A,. Gomez, S. (2007). Portfolio selection using neural networks. Computers & Operations Research (34), 1177–1191.
- Fieldsend, E., & Singh, S. (2002). A Multi-objective algorithm based upon particle swarm optimisation, an Eefficient data structure and turbulence, proceedings of the 2002. Workshop on Computational Intelligence, Birmingham, UK 37–44.
- Fonseca, C.M., & Fleming, P.J. (1993). Genetic algorithms for 13- multiobjective optimization, formulation, discussion, and generalization. In Proceedings of the Fifth International Conference on Genetic Algorithms 355–365.
- Goldberg, D.E., & Richardson, J.J. (1987). Genetic algorithms with sharing for multimodal function optimization. Genetic Algorithms and Their Applications, Proceedings of the Second ICGA, Lawrence Erlbaum Associates, Hillsdale, NJ, 41–49.
- Haupt, R. L., & Haupt, S. E. (1998). Practical genetic algorithms. New York: Wiley.
- Horn, J., Nafpliotis, N., & Goldberg, D.E. (1994). A niched pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, vol: 1, Piscataway, New Jersey. IEEE Service Center 82–87.
- Kennedy, J., & Eberhart. R.C. (1995). Particle swarm optimization. IEEE Int’l Conf. on Neural Networks, (4),1942–1948.
- Kennedy, J., & Shi, Y. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann Publishers.
- Konno, H., & Yamazaki, H. (1991). Mean-absolute deviation portfolio in optimization model and its application to Tokyo stock market. Management Science, (37) 519–531.
- Markowitz, H. (1952). Portfolio selection. Journal of Finance, 77-90
- Miettinen, K. (1999). Evolutionary algorithms in engineering and computer science: recent advances in genetic algorithms, evolution strategies, evolutionary programming, genetic programming, and industrial applications. Chichester; New York: Wiley.
- Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge, Mass.: MIT Press.
- Moshekhian, S., & Najafi, A. (2015). Portfolio optimization using multi-objective particle swarm optimization. Financial Engineering and Portfolio Management, 6(23), 133-147 (In Persian).
- Narimani, A., & Narimani, R. (2014). Portfolio management by using MATLAB & GAMS, Naghos (In Persian).
- Olsson, A. (2011). Particle swarm optimization: theory, techniques and applications. New York: Nova Science Publishers.
- Otten, R., & Ginneken, L. (1989). The annealing algorithm. Boston: Kluwer Academic Publishers.
- Parsopoulos, K., & Vrahatis, M.N. (2002). Particle swarm optimization method in multiobjective problems. Symposium on Applied Computing (SAC’2002) 603–607.
- Raei, R., & Alibaigi, H. (2011). Portfolio optimization using particle swarm optimization method. Financial Research Journal, (29) 21-41 (In Persian).
- Raie, R., & Poutanfar, A. (2012). Advanced investment management. The Organization for Researching and Composing Univercity Textbook in the Humanities, 175-192 (In Persian).
- Raie, R., & Talangi, A. (2005). Advanced Investment Management. The Organization for Researching and Composing Univercity Textbook in the Humanities, 175-192 (In Persian).
- Rajabi, M., & Khalozade, H. (2015). Optimal portfolio prediction in Tehran stock market using multi-objective evolutionary algorithms, NSGA-II and MOPSO. Financial Research Journal, 16(2), 253-270 (In Persian).
- Sumathi, S., Hamsapriya, T., & Surekha, P. (2008). Evolutionary intelligence: an introduction to theory and applications with Matlab, Berlin: Springer.
- Taghavifard, M., & Mansouri, T. (2008). A Meta-heuristic algorithm for portfolio selection problem under cardinality and bounding constraints. The Economic Research, 7(4), 49-69 (In Persian).
- Venkataraman, P. (2002). Applied optimization with MATLAB programming. New York: Wiley.
- Yin Peng, Y., & Jing Yu, W. (2006). A particle swarm optimization approach to the nonlinear resource allocation problem. Applied Mathematics and Computation, 183: 232–242.
- Yan, W., & Shurong, L. (2007). Multi-period semi-variance portfolio selection: Model and numerical solution. Applied Mathematics and Computation, (194),128–134.
- Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms, empirical results. Evolutionary Computation, 8(2),173–195.
|