تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,735 |
تعداد مشاهده مقاله | 51,835,989 |
تعداد دریافت فایل اصل مقاله | 14,672,379 |
اشتراکگذاری بهینه انرژی منابع تولید پراکنده تجدیدپذیر در شبکه توزیع با درنظرگرفتن عدمقطعیت | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 39، دوره 48، شماره 2 - شماره پیاپی 84، شهریور 1397، صفحه 931-942 اصل مقاله (1.94 M) | ||
نویسندگان | ||
احسان هوشمند؛ رضا نوروزیان* ؛ عباس ربیعی | ||
دانشگاه زنجان - دانشکده مهندسی - گروه برق | ||
چکیده | ||
در این مقاله یک رهیافت تصادفی کارآمد به منظور درنظر گرفتن اثرات عدمقطعیت بر نحوه اشتراکگذاری بهینه انرژی و جایابی مکان نصب منابع تولید پراکنده تجدیدپذیر در شبکهی توزیع ارائه شده است. تابع هدف اصلی مدل پیشنهادی، کاهش تلفات انرژی در شبکهی توزیع است. به دلیل بزرگی تلفات سالیانه شبکه توزیع، کاهش تلفات مزایای چشمگیری دارد. حذف بخشی از تلفات، صرفهجویی قابل توجهی را در مصرف انرژی به دنبال دارد و سرمایهگذاری برای افزایش کارایی شبکه را توجیه میکند. از جمله این سرمایهگذاریها قراردادن منابع توزیعشده (DG) مانند منابع تولید پاک و تجدیدپذیر (RES) در شبکه است. عدمقطعیت موجود در تولید RES و تقاضای انرژی، بهرهبردار شبکه توزیع را در بهکارگیری بهینه از منابع مختلف را با چالش مواجه کرده است. در نتیجه، مشارکت انرژی منابع تجدیدپذیر عموماً بر این اساس مشخص میشود که فقط بخش کوچکی از تولید نامی این منابع در تأمین انرژی شبکه نقش دارد. روش پیشنهادی اشتراکگذاری بهینه انرژی و جایابی منابع تجدیدپذیر را در برابر تمام وضعیتهای غیر قطعی بهرهبرداری را تضمین میکند. مدیریت عدمقطعیت در این مقاله براساس روش سناریو بنیان مدلسازی شده است. همچنین با انجام تحلیل حساسیت، حداکثر درصد نفوذ و تعداد بهینه منابع تجدیدپذیر قابل نصب در شبکه تعیین میشود. مدل پیشنهادی برروی شبکه توزیع شعاعی 33 شینه IEEE و در محیط نرمافزار بهینهسازی GAMS پیادهسازی شده است. نتایج شبیهسازی توزیع مناسب انرژی بر روی منابع موجود و کاهش تلفات انرژی شبکه را براساس جایابی و اشتراکگذاری انرژی منابع تولید پراکنده تجدیدپذیر نشان میدهد. ارزیابی نتایج برنامهریزی تصادفی نسبت به برنامهریزی در حالت قطعی، دستیابی به یک مقدار واقعی برای کاهش تلفات در حدود 35% را تضمین میکند. | ||
کلیدواژهها | ||
منابع تولید تجدیدپذیر (RES)؛ تولید توان بادی؛ عدم قطعیت؛ سلول خورشیدی؛ سناریو بنیان؛ اشتراکگذاری بهینه انرژی | ||
مراجع | ||
[1] P. S. Georgilakis and N. D. Hatziargyriou, “Optimal distributed generation placement in power distribution networks: models, methods, and future research,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3420-3428, August 2013. [2] R. Al Abri, E. F. El-Saadany and Y. M. Atwa, “Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 326-334, February 2013. [3] X. Zhang, G. G. Karady and S. T. Ariaratnam, “Optimal allocation of CHP-based distributed generation on urban energy distribution networks,” Sustainable Energy, IEEE Transactions on Power Systems, vol. 5, no. 1, pp. 246-253, January 2014. [4] Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for optimal allocation of wind-based distributed generation in distribution systems,” IET Renewable Power Generation, vol. 5, no. 1, pp. 79-88, January 2011. [5] F. S. Abu-Mouti and M. El-Hawary, “Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm,” IEEE Transactions on Power Delivery, vol. 26, pp. 2090-2101, 2011. [6] M. Othman, W. El-Khattam, Y. G. Hegazy and A. Y. Abdelaziz, “Optimal placement and sizing of distributed generators in unbalanced distribution systems using supervised Big Bang-Big Crunch method,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 911-919, March 2015. [7] M. Esmaili, “Placement of minimum distributed generation units observing power losses and voltage stability with network constraints,” IET Generation, Transmission & Distribution, vol. 7, no. 8, pp. 813-821, August 2013. [8] P. Juanuwattanakul and M. A. Masoum, “Increasing distributed generation penetration in multiphase distribution networks considering grid losses, maximum loading factor and bus voltage limits,” IET Generation, Transmission & Distribution, vol. 6, no. 12, pp. 1262-1271, December 2012. [9] C. Wang and M. H. Nehrir, “Analytical approaches for optimal placement of distributed generation sources in power systems,” IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 2068-2076, November 2004. [10] Y. Atwa, E. El-Saadany, M. Salama and R. Seethapathy, “Optimal renewable resources mix for distribution system energy loss minimization,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 360-370, February 2010. [11] A. Soroudi, B. Mohammadi-Ivatloo and A. Rabiee, “Energy hub management with intermittent wind power,” in Large Scale Renewable Power Generation, ed: Springer, pp. 413-438, January 2014. [12] P. Chen, P. Siano, Z. Chen and B. Bak-Jensen, “Optimal allocation of power-electronic interfaced wind turbines using a genetic algorithm–Monte Carlo hybrid optimization method,” in Wind Power Systems, ed: Springer, pp. 1-23, January 2010. [13] V. A. Evangelopoulos and P. S. Georgilakis, “Optimal distributed generation placement under uncertainties based on point estimate method embedded genetic algorithm,” IET Generation Transmission & Distribution, vol. 8, no. 3, pp. 389-400, March 2014. [14] A. Rabiee, A. Soroudi, B. Mohammadi-Ivatloo and M. Parniani, “Corrective voltage control scheme considering demand response and stochastic wind power,” IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 2965-2973, November 2014. [15] A. Rabiee and A. Soroudi, “Stochastic multiperiod OPF model of power systems with HVDC-connected intermittent wind power generation,” Power Delivery, IEEE Transactions on, vol. 29, no. 1, pp. 336-344, February 2014. [16] عباس ربیعی، احسان هوشمند و سامان نیک خواه, ”استفاده از تئوری تصمیم گیری مبتنی بر شکاف اطلاعاتی برای حل مسئله پخش بهینه توان مقید به پایداری ولتاژ در حضور نیروگاههای بادی“، مجله مهندسی برق دانشگاه تبریز، 1395، شماره 4 جلد(46). ص-ص109-122 [17] M. Marzband, A. Sumper, A. Ruiz-Álvarez, J. L. Domínguez-García, and B. Tomoiagă, “Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets,” Applied Energy, vol. 106, pp. 365-376, January 2013. [18] امیرحسین زارع نیستانک، رحمت الله هوشمند و معین پرستگاری، ”بهرهبرداری بهینه از نیروگاههای بادی با استفاده از نیروگاههای تلمبهای- ذخیرهای بهمنظور کاهش عدم قطعیت در عملکرد آنان در بازار برق“، مجلـه مهندسـی بـرق دانشـگاه تبریـز، ۱۳۹۱، شماره ۲جلد (۴۱). ص-ص ۵۲-۵۹. [19] T.-H. Yeh and L. Wang, "A study on generator capacity for wind turbines under various tower heights and rated wind speeds using Weibull distribution,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 592-602, January 2008. [20] S. Wen, H. Lan, Q. Fu, C. Y. David and L. Zhang, “Economic allocation for energy storage system considering wind power distribution,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 644-652, March 2015. [21] V. S. Tabar, M. A. Jirdehi and R. Hemmati, "Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option,” Energy, November 2016. [22] T. Amraee, A. Soroudi and A. Ranjbar, “Probabilistic determination of pilot points for zonal voltage control,” IET generation transmission & distribution, vol. 6, no. 1, pp. 1-10, January 2012. [23] [Online]. Available: http://www.powerauthority.on.ca/power-planning [24] A. Soroudi, P. Siano and A. Keane, “Optimal DR and ESS scheduling for distribution losses payments minimization under electricity price uncertainty,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 261-272, January 2016. [25] M. Kashem, V. Ganapathy, G. Jasmon and M. Buhari, “A novel method for loss minimization in distribution networks,” in Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on, 2000, pp. 251-256. | ||
آمار تعداد مشاهده مقاله: 567 تعداد دریافت فایل اصل مقاله: 699 |