تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,722 |
تعداد دریافت فایل اصل مقاله | 15,213,799 |
ارائه رویکردی نوین برای طراحی کنترلکننده تحملپذیر عیب عملگر بر اساس شناسایی عیب | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 12، دوره 48، شماره 2 - شماره پیاپی 84، شهریور 1397، صفحه 595-608 اصل مقاله (1.08 M) | ||
نویسندگان | ||
علی خدادادی1؛ مریم شهریاری کاهکشی* 2؛ عباس چترایی1 | ||
1دانشگاه آزاد اسلامی واحد نجف آباد - دانشکده مهندسی برق | ||
2دانشگاه شهرکرد - دانشکده فنی و مهندسی - گروه مهندسی برق | ||
چکیده | ||
در این مقاله، یک رویکرد نوین برای طراحی کنترلکننده تحملپذیر عیب عملگر بر اساس شناسایی عیب در سیستمهای خطی ارائهشده است. شناسایی عیب برای آشکارسازی عیب، تعیین عملگر معیوب (جداسازی عیب) و تخمین دینامیک نامعین عیب پیشنهاد شده است. برای آشکارسازی عیب، یک رؤیتگر تشخیصی بهمنظور نمایش وضعیت سیستم در هر لحظه و تولید سیگنال باقیمانده طراحی شده است. پس از آشکارسازی عیب، واحد جداسازی عیب متشکل از بانکی از رؤیتگرها برای تعیین عملگر معیوب فعال شده است. پس از تعیین عملگر معیوب، تخمین دینامیک نامعین عیب با حل یک نامساوی ماتریسی خطی بهدست آمده است. سپس، کنترلکنندهای با قابلیت تحمل عیب، بر اساس خروجی واحد شناسایی عیب، پیشنهاد شده است. روش پیشنهادی، کرانداری سیگنالهای سیستم حلقهبسته را تضمین نموده و هدف ردیابی را نیز برآورده میسازد. نتایج شبیهسازی و مقایسه برای تأیید کارایی و عملکرد روش پیشنهادی ارائه شدند. | ||
کلیدواژهها | ||
شناسایی عیب؛ عیب عملگر؛ آشکارسازی و جداسازی عیب؛ کنترلکننده تحملپذیر عیب | ||
مراجع | ||
[1] Q. Hu and B. Xiao, “Adaptive fault tolerant control using integral sliding mode strategy with application to flexible space craft,” Internation Journal of Systems Science, vol. 44, no. 12, pp. 2273-2286, 2013. [2] Q. Shen, D. Wang, S. Zhu and E.K. Poh, “Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft,” IEEE Transactions on Control Systems Technology, vol. 23, no. 3, pp. 1131-1138, 2015. [3] مرتضی خرمی کشکولی و مریم دهقانی، «تشخیص، شناسایی و جداسازی عیب توربین گاز پالایشگاه دوم پارس جنوبی با استفاده از روشهای ترکیبی داده کاوی، k-means ، تحلیل مؤلفههای اصلی و ماشین بردار پشتیبان»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 515-501، تابستان 96. [4] M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and Fault-Tolerant Control: Springer Berlin Heidelberg, 2006. [5] M. S. Mahmoud and Y. Xia, Analysis and synthesis of fault tolerant control systems, wiley, 2014. [6] J.D. Boskovic and R.K. Mehra, “Intelligent adaptive control of a tailless advanced fighter aircraft under wing damage,” Journal of Guidance, Control and Dynamics, vol. 23, no. 5, pp. 876-884, 2000. [7] J.D. Boskovic and R.K. Mehra, “Multiple-model adaptive flight vomtrol scheme for accommodation of actuator failures,” Journal of Guidance, Control and Dynamics, vol. 25, no. 4, pp. 712-724, 2002. [8] G.G. Yen and H. Liang-Wei, “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 296-312, 2003. [9] M. Gholami, V. Cocquempot, H. Schiøler and T. Bak, “Active fault tolerant control of piecewise affine systems with reference tracking and input constraints,” International Journal of Adaptive Control and Signal Processing, vol. 28, no. 11, pp. 1240-1265, 2014. [10] H.H.N. Wu and H.Y. Zhang, “Reliable H∞ fuzzy control for continuouse-time nonlinear systems with actuator failures,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 609618, 2006. [11] S. L. Dai and J. Zhao, “Reliable H∞ controller design for a class of uncertain linear systems with actuator failures,” International Journal of Control, Automation, and Systems, vol. 6, no. 6, pp. 954-959, 2008. [12] مریم کازرونی، علیرضا خیاطیان و سید علیاکبر صفوی، «کنترل غیرمتمرکز H∞تحملپذیر عیب بر اساس مشاهدهگر برای سیستمهای غیرخطی به هم متصل شامل تأخیر زمانی»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحه 663-653، تابستان 96. [13] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2, pp. 229-252, 2008. [14] X. Jin and G.H. Yang, “Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances,” Acta Automatica Sinica., vol. 35, no. 3, pp. 305-309, 2009. [15] L.Y. Wen, G. Tao and H. Yang, “LQ control based actuator failure compensation,” Optimal Control Applications and Methods, vol. 37, no. 2, pp. 227-247, 2016. [16] W. Chen and M. Saif, “Adaptive actuator fault detection, isolation and accomodation in uncertain systems,” International Journal of Control, vol. 80, no. 1, pp. 45-63, 2007. [17] H. Fan, B. Liu, Y. Shen and W. Wang, “Adaptive failure compensation control for uncertain systems with stochastic actuator failures,” IEEE Transactions on Automatic Control, vol. 59, no. 3, pp. 808-815, 2014. [18] X. Yao, G, Tao, Y, Ma and R. Qi, “Adaptive actuator failure compensation design for spacecraft attitude control,” IEEE Transactions on Aerospace and Electronic Systems, vol. 52, no. 3, pp. 1021-1034, 2016. [19] W. Wang and C. Wen “Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance,” Automatica, vol. 46, no. 12, pp. 2082-2091, 2010. [20] X.-J. Li and G.-H. Yang, “ Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures,” IET Control Theory and Applications, vol. 6, no. 10, pp. 1544–1551, 2012. [21] M. Kamali, J. Askari and F. Sheikholeslam, “An output-feedback adaptive actuator failure compensation for systems with unknown state delays,” Nonlinear Dynamics, vol. 67, no. 4, pp. 2397-2410, 2011. [22] G. Tao, Q. Ruiyun and T. Chang, “A parameter estimation based adaptive actuator failure compensation control scheme,” Journal of Systems Engineering and Electronics, vol. 22, no. 1, pp. 1-11, 2011. [23] Z.Q. Wu, Y. Yang and C.H. Xu “Adaptive fault diagnosis and active tolerant control for wind energy conversion system,” International Journal of Control, Automation, and Systems, vol. 13, Issue 1, pp. 120–125, 2015. [24] W. Wang and C. Wen, “adaptive failure compensation for uncertaine systems with multiple inputs,” Journal of Systems Engineering and Electronics, vol. 22, no. 1, pp.70-76, 2011. [25] G. Tao, “Direct Adaptive Actuator Failure Compensation Control :A tutorial,” Journal of Control and Decision, vol. 1, no. 1, pp. 75-101, 2014. [26] L-B. Wu, G-H. Yang and D. Ye, “Robust adaptive fault-tolerant control for linear systems with actuator failures and mismatched parameter uncertainties,” IET Control Theory and Applications, vol. 8, no. 6, pp. 441–449. 2014. [27] M. Shahriari-kahkeshi, F. Sheikholeslam and J. Askari, “Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems,” Nonlinear Dynamics, vol. 79, no. 4, pp. 2623-2637, 2015. [28] B. Jiang, M. Staroswiecki and V. Cocquempot, “Fault accommodation for nonlinear dynamic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 9, pp. 1578-1583, 2006. [29] P.M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-a survey and som new results,” Automatica, vol. 26, no. 3, pp. 459-474, 1990. [30] K. Zhang, B. Jiang and V. Cocquempot, “Adaptive Observer-based Fast Fault Estimation,” International Journal of Control, Automation, and Systems, vol. 6, no. 3, pp. 320-326, 2008. [31] W. Chen and J. Jiang, “Fault-tolerant control against stuck actuator faults,” IEE Proc. Control Theory and Applications., vol. 125, no. 2, pp. 138-146, 2005. | ||
آمار تعداد مشاهده مقاله: 442 تعداد دریافت فایل اصل مقاله: 491 |