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Abstract In this paper, we consider the application of the homotopy perturbation method

(HPM) to compute the eigenvalues of the Sturm-Liouville problem (SLP) which is
called non-definite SLP. Two important Examples show that HPM is reliable method

for computing the eigenvalues of SLP.
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1. Introduction

We study the indefinite Sturm-Liouville spectral problem

y′′ + (λ r(x)− q(x))y = 0, a ≤ x ≤ b, (1.1)

y(a) = y(b) = 0,

defined on the interval [a, b] where λ is a real parameter, r(x), q(x) are real and
integrable on [a, b]; moreover,

∫ b

a

√
r+(t)dt > 0, where r+(x) = max{r(x), 0}. (1.2)

It follows from [5] that the spectrum of this problem is discrete and has no finite accu-
mulation points; moreover, only finitely many eigenvalues lie the outside the real and
imaginary axes. In what follows, we shall assume that λ is a positive parameter. This
paper focuses on the Homotopy perturbation analysis (HPM), which has been intro-
duced by He to solve approximately the differential equations [9] and [10]. Among
numerical methods, the finite difference methods [3, 4], the variational methods and
recently Homotopy perturbation analysis [2] are commonly referred as some tradi-
tional and powerful methods for solving classic Sturm-Liouville problem. Of course,
many new developments and improvements are often introduced [15, 17]. Scott [16]
presented an initial-value method for SLP with non separated boundary conditions.
Paine [14], Pryce [15] and Andrew [3] used finite difference scheme and asymptotic
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correction technique to solve classic SLP with Dirichlet boundary conditions. Ander-
son and Hoog [4] extended the method of Paine to the general separated boundary
conditions. Çelik [7] investigated the collocation method for approximating compu-
tation of classic SLP eigenvalues by truncated Chebyshev series. Çelik and Gokmer
[8] also applied the collocation method for computation of periodic SLP. Yücel [18]
applied the polynomial -based differential quadrature (PDQ) and Fourier expansion-
based differential quadrature (FDQ) methods have been to compute the eigenvalues
of periodic SLP. Chen and Ping Ma [6] proposed the Legendre-Galerkin-Chebyshev
collocation method (LGCC) to compute the eigenvalues of SLP with many different
boundary conditions. An improvement for Chebyshev collocation method in solving
certain SLP is proposed by Yuan and et al [19]. They investigated SLP with two
turning points and semi periodic boundary conditions.
At first, we mention the theory of higher order distribution of positive eigenvalues
associated with problem (1.1), on the assumption that turning point is of arbitrary
order. In particular, where the end points a or b is a zero of the weight function r(x).
At the end, we present numerical method both classic and non classic Sturm-Liouville
problem. In this paper, we present Homotopy perturbation analysis for approximate
computation of eigenvalues of SLP with Dirichlet boundary condition by focusing on
a very important special case i.e. r(x) = xα or r(x) = (x− xν)α, in which α must be
of odd order given the assumption of non-definiteness.

2. Eigenvalues of SLP:Theory and HPM

The theory of boundary eigenvalue problem (1.1) dates back to the pioneering
research of R.G.D. Richardson and O. Haupt (see [13] and the references therein for
a brief history and survey). The leading term in the asymptotic expansion of the real
eigenvalues was the subject of the Jörgens conjecture dating from 1964, a conjecture
that was finally proved and extended in [5]. The thrust of this conjecture is that,
once suitably relabeled, the positive λ+n eigenvalues admit the asymptotic estimate

λ+n ∼
n2π2

(
∫ b
a

√
r+(x)dx)2

, n→∞.

Mingarelli and Jodayree [16, 17] considered the case r(x) = xα on [a, b]. They showed
following estimation√

λ+n =
nπ − π

4∫ b
0
xα/2

− 1

nπ
{ 4ν2 − 1

8
∫ b
0
xα/2

− 1

2

∫ b

0

q(x)

xα/2
}+O(

1

n2
),

where ν = 1
α+2 .

Also if we assume that r(a) = 0 and r(x) > 0 on (a, b] then

√
λ+n =

nπ + (νπ2 −
π
4 )∫ b

a
xα/2

− 1

nπ
{ 4ν2 − 1

8
∫ b
a
xα/2

− 1

2
H(b)}+O(

1

n2
), (2.1)
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where

H(b) =

∫ b

xν

(
q(x)

r̃(x)
− 1

r̃3/4
d2

dx2
(r̃−1/4))

r̃

r
1
2

dx,

and

r̃ = (
dξ

dx
)2 =

4r(x)

(α+ 2)2(ξ(x))α
,

ξ(x) =

{
−(

∫ xν
x

(−r(t))1/2dt)
2

α+2 , x ≤ xν ,
(
∫ x
xν

(r(t))1/2dt)
2

α+2 , xν ≤ x.

Without loss of generality, we consider problem

y′′ + (λ r(x)− q(x))y = 0, 0 ≤ x ≤ 1, (2.2)

y(0) = y(1) = 0,

where r(x) = xα or r(x) = (x− xν)α.

Since the homotopy perturbation method usually defines the given differential equa-
tion in an operator form we will rewrite (1.1) in following form

A(y) = L(y) +N(y) = f(x).

Here L = d2

dx2 , N(y) = −(λr(x)−q(x))y and f(x) = 0. Now we construct a homotopy
υ(x, p) : Ω× [0, 1]→ R which satisfies

H(υ, p) = (1− p)[L(y)− L(y0)] + p[N(υ)− f(x)] = 0, p, x ∈ [0, 1],

where p ∈ [0, 1] is embedding parameter, y0 is an initial approximation, which satisfies
the boundary conditions. Obviously we have

H(υ, 0) = L(y)− L(y0)],

H(υ, 1) = A(y)− f(x).

Changing process of p from zero to unity is just that of υ(x, p) from y0 to y(x).
We assume that the solution of equation

H(υ, p) = (1− p)[L(y)− L(y0)] + p[N(υ)− f(x)] = 0, p, x ∈ [0, 1], (2.3)

can be written as a power series in p,υ = υ0 + pυ1 + p2υ2 + . . . .

By setting p = 1, the approximation solution of A(y)− f(x) = 0 is obtained.
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3. Numerical examples and conclusions

In this section of the paper, for demonstrate the efficiency and accuracy of the
HPM method, we give several numerical examples. Numerical results show that the
HPM method is effective method for non-definite SLP.

Example 3.1. Consider the boundary value problem

y′′ + λxαy = 0, y(0) = y(1) = 0,

Let L(y) = y′′ and N(y) = λxαy. We also assume that

Y (x, p) = y0(x) + py1(x) + p2y2(x) + p3y3(x) + . . . .

By substituting of above in the differential equation and equating the coefficients of
p we obtain

coefficients of p0 : y′′0 (x) = 0, y0(0) = 0,
coefficients of p1 : y′′1 (x) + λxαy0(x) = 0, y1(0) = y′1(0) = 0,
coefficients of p2 : y′′2 (x) + λxαy1(x) = 0, y2(0) = y′2(0) = 0,

...

If we solve the above equations we get

y0(x) = ax,

y1(x) = −aλxα+3/(α+ 2)(α+ 3),

y2(x) = aλ2xα+6/(α+ 2)(α+ 3)(α+ 5)(α+ 6),

y3(x) = −aλ3xα+8/(α+ 2)(α+ 3)(α+ 5)(α+ 6)(α+ 8)(α+ 9),

...

Therefore the solution of the problem is

y(x, λ) = a(x− λxα+3/(α+ 2)(α+ 3) + λ2xα+6/(α+ 2)(α+ 3)(α+ 5)(α+ 6)

−λ3xα+8/(α+ 2)(α+ 3)(α+ 5)(α+ 6)(α+ 8)(α+ 9) + · · · ).
If we consider special case by choosing a = λ5/6 and α = 1 then we have

y(x) = x1/2J1/3(2/3λ1/2x3/2).

To satisfy the other boundary condition we have y(1) = 0, which implies the eigen-
values are the roots of J1/3(2/3λ1/2) = 0. On the other hand from [1] one can see
that the roots of Jν(z) are

jm ∼ β −
α− 1

8β
− 4(α− 1)(7α− 31)

3(8β)3
− . . . ,

where

β = (m+ ν/2− 1/4)π, α = 4ν2.
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By inserting z = 2/3λ1/2x3/2 and ν = 1/3 we get√
λ̃n =

3

2
(nπ − π

12
) +

5

72(nπ − π
12 )

+O(
1

n3
).

On the other hand, by relation (2.1), the asymptotic distribution of eigenvalues sat-
isfies √

λn =
3

2
(nπ − π

12
) +

5

48nπ
+O(

1

n2
).

From above we conclude that error of approximation satisfies

|
√
λn −

√
λ̃n| =

5

48nπ
− 5

72(nπ − π
12 )

+O(
1

n2
).

Table 1 shows comparison the eigenvalues for HPM method and asymptotic distri-
bution of eigenvalues.

Table 1. Approximate solutions and error in Example 3.1.

k λk λ
HPM(19)
k λ

HPM(39)
k λ

HPM(49)
k

|λk−λHPM(49)
k |
λk

1 18.94736582 18.95626559 18.95626559 18.95626559 0.0004697
2 81.87858442 81.88658338 81.88658338 81.88658338 0.0000977
3 189.2152218 189.2209333 189.2209333 189.2209333 0.0000302
4 340.9632159 340.9678986 340.9669591 340.9669591 0.0000012
5 537.1237981 528.4613037 537.1257454 537.1257454 0.0000011
6 777.6973851 777.6975694 777.6975694 0.0000000
7 1062.684157 1062.682527 1062.682527 0.0000000
8 1392.084204 1392.080661 1392.080659 0.0000000
9 1765.897577 1765.851673 1765.891983 0.0000000
10 2184.124306 2184.116511 0.0000003
11 2646.764411 2646.752214 0.0000004
12 3153.817905 3174.832813 0.0006663

Example 3.2. Consider the following SLP

y′′ + (λxα − xβ)y = 0, y(0) = y(1) = 0,

where α > 0 and β > α
2 . Note that the weight function vanishes at the left endpoint.

By (2.1), we have√
λn = k(nπ +

νπ

2
− π

4
)− 1

nπ
{k(4ν2 − 1)

8
− 1

2(β − ν + 2)
}+O(

1

n2
).

In the special case, α = 1, β = 2, the results are given in the Table 2. The relative
error shows that position is better for large eigenvalues.

y′′ + (λx− x2)y = 0, y(0) = y(1) = 0, (3.1)



506 F. DASTMALCHI SAEI

We also assume that

Y (x, p) = y0(x) + py1(x) + p2y2(x) + p3y3(x) + . . . .

By substituting of above in (3.1) and equating the coefficients of p we obtain

coefficients of p0 : y′′0 (x) = 0, y0(0) = 0,
coefficients of p1 : y′′1 (x) + (λx− x2)y0(x) = 0, y1(0) = y′1(0) = 0,
coefficients of p2 : y′′2 (x) + (λx− x2)y1(x) = 0, y2(0) = y′2(0) = 0,

...

If we solve the above equations we get

y0(x) = ax,

y1(x) = ax5/4.5− aλx4/3.4,

y2(x) = ax9/4.5.8.9 + aλ2x7/3.4.6.7− 5aλx8/60.42,

...

Therefore the solution of the problem is

y(x, λ) = a(x+ x5/4.5− λx4/3.4 + x9/4.5.8.9 + λ2x7/3.4.6.7− 5λx8/60.42 + · · · ).

Table 2 shows comparison the eigenvalues for HPM and asymptotic distribution of
eigenvalues.

Table 2. Approximate solutions and error in Example 3.2.

k λk λ
HPM(19)
k λ

HPM(39)
k λ

HPM(49)
k

|λk−λHPM(49)
k |
λk

1 18.94736582 19.55584713 19.55584713 18.95626559 0.0004697
2 81.87858442 82.48671257 82.48671257 81.88658338 0.0000977
3 189.2152218 189.8210080 189.8210080 189.2209333 0.0000302
4 340.9632159 341.5679438 341.5670043 340.9669591 0.0000012
5 537.1237981 529.0613346 537.7257753 537.1257454 0.0000011
6 777.6973851 778.2975905 777.6975694 0.0000000
7 1062.684157 1063.282543 1062.682527 0.0000000
8 1392.084204 1392.680673 1392.080659 0.0000000
9 1765.897577 1766.451682 1765.891983 0.0000000
10 2184.124306 2184.116511 0.0000003
11 2646.764411 2646.752214 0.0000004
12 3153.817905 3174.832813 0.0006663
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4. Conclusions

In this paper, we investigate the HPM for approximation of eigenvalues of non-
definite SLP with Dirichlet boundary conditions. One of the main advantage of this
method is that the approximate trivial solution (y0(x)) will spontaneously be satisfy
in Dirichlet boundary conditions. The numerical examples showed that the HPM is
efficient and considerable.
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