تعداد نشریات | 44 |
تعداد شمارهها | 1,302 |
تعداد مقالات | 16,019 |
تعداد مشاهده مقاله | 52,485,285 |
تعداد دریافت فایل اصل مقاله | 15,212,964 |
تاثیر باکتریهای محرک رشد گیاه بر میزان آهن قابل جذب خاک و جذب آن توسط گندم | ||
دانش کشاورزی وتولید پایدار | ||
مقاله 4، دوره 28، شماره 2، مرداد 1397، صفحه 53-64 اصل مقاله (806.36 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
اکبر قدم خانی1؛ نعیمه عنایتی ضمیر* 2؛ مجتبی نوروزی مصیر2 | ||
1گروه علوم خاک، دانشگاه شهید چمران اهواز | ||
2گروه علوم خاک دانشگاه شهید چمران اهواز | ||
چکیده | ||
چکیده کمبود آهن قابل جذب برای گیاه در بیشتر اراضی تحت کشت کشور وجود دارد. از طرفی برخی باکتریهای محرک رشد گیاه میتوانند موجب افزایش دسترسی عناصر برای گیاه شوند. در مطالعه حاضر تاثیر باکتریهای محرک رشد بر آهن قابل جذب در خاک و برخی ویژگیهای گندم رقم چمران در قالب طرح کاملا تصادفی با آرایش فاکتوریل در گلخانه بررسی شد. فاکتورهای آزمایش شامل چهار سطح باکتری، شاهد بدون مایه زنی، مایهزنی با انتروباکتر کلوآسه R33، مایه زنی با انتروباکتر کلوآسه sug R_1و مایه زنی با هردو باکتری و سه سطح کود سولفات آهن (صفر، 50 و 100 درصد نیازی کودی) بودند. نتایج نشان دهنده کمترین مقدار pHو بیشترین مقدار آهن قابل جذب خاک در تیمار دارای مخلوط دو باکتری و سطح کودی 50 درصد مشاهده شد. بیشترین عملکرد دانه با 26 درصد افزایش در تیمار مخلوط دو باکتری و سطح کودی 50 درصد نسبت به شاهد مشاهده گردید. بیشینه غلظت آهن و همچنین آهن جذب شده در دانه نیز به ترتیب با 172 و 50 افزایش نسبت به شاهد در تیمار مخلوط دوباکتری و سطح کودی 50 درصد بهدست آمد. | ||
کلیدواژهها | ||
باکتری محرک رشد گیاه؛ عملکرد؛ کلروفیل؛ کود شیمیایی؛ گندم | ||
مراجع | ||
Adesemoye AO, Torbert HA and Kloepper JW, 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. FEMS Microbial Ecology, 58: 921-929.
Afzal A and Bano A, 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture and Biology, 10: 85-88.
Ahmad F, Ahmad I, and Khan MS, 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163(2):173-181.
Alcantara E, Romera FJ, Canete M, Guardia MD, 2002. Effect of bicarbonate and iron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock Nemaguard. Journal of Plant Nutrition, 23: 1607-1617.
Aleksandrov VG, Blagodyr RN and Ilev IP, 1967. Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Z, 29:111-114.
Alipour ZT and Sobhanipour A, 2012. The effect of Thiobacillus and Pseudomonas fluorescent inoculation on maize growth, and Fe uptake. Annals of Biological Research, 3(3):1661-1666.
Bahadori F, Ashorabadi E S, Mirza M, Matinizade M and Abdosi V, 2013. Improved growth, essential oil yield and quality in Thymus daenensis Celak on mycorrhizal and plant growth promoting rhizobacteria inoculation. International Journal of Agronomy and Plant Production, 4: 3384-3391.
Cézard C, Farvacques N and Sonnet P, 2015. Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Current Medicinal Chemistry, 22(2):165-186.
Cunrath O, Gasser V, Hoegy F, Reimmann C, Guillon L and Schalk, IJ, 2015. A cell biological view of the siderophore pyochelin iron uptake pathway in Pseudomonas aeruginosa. Environmental Microbiology, 17(1): 171-185.
Dong H, 2010. Mineral-microbe interactions: a review. Frontiers of Earth Science in China, 4(2):127-147.
Fernandez V and Ebert G, 2005. Foliar iron fertilization- a critical review. Journal of Plant Nutrition, 28: 2113-2124.
Gupta PK, 2004. Soil, Plant, Water and Fertilizer Analysis. Agrobios (India), 438 p.
Klute A, 1986. Methods of soil analysis, Part 1: physical and mineralogical methods. Soil Science Society of America, Madison, WI.
Kobayashi T and Nishizawa NK, 2012. Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63:131-152.
Lindsay WL, 1984. Soil and plant relationships associated with iron deficiency with emphasis on nutrient interactions. Journal of Plant Nutrition, 7(1-5): 489-500.
Lindsay WL and Norvell WA, 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal, 42: 421-428.
Liu D, Yang Q, Ge K, Hu X, Qi G, Du B, Liu K and Ding Y, 2017. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Brazilian Journal of Microbiology, 1-15.
Madhaiyan M, Peng N, Te NS, Hsin C, Lin C, Lin F, Reddy C, Yan H, and Ji L. 2013. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnology for Biofuels, 6: 1-13.
Malakouti MJ and Gheybi MN, 2000. Determination of critical level of effective in soil, plant and fruit for the quality and yield improvement of the country's strategic products.2ed Edition. Agricultural education publication. Pp. 92. (In Persian).
Mishra PK, Bisht SC, Ruwari P, Joshi G K, Singh G, Bisht JK and Bhatt JC, 2011. Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). European Journal of Soil Biology, 47: 35-43.
Mohammadi Kashka F, Pirdashti H, Yaghoubian Y, and Bakhshandeh E, 2016. Evaluation of growth and yield stability of wheat by application of Trichoderma and Enterobacter sp. Journal of Sustainable Agriculture and Production Science, 26 (4): 1-15.(In Persion).
Nagajyoti PC, Lee KD and Sreekanth TVM, 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3):199-216.
Pirhadi M, Enayatizamir N, Motamedi H and K Sorkheh K, 2016. Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. Bioscience Biotechnology Research Communication. 9: 530-538.
Ramesh A, Sharma SK, Sharma MP, Yadav N and Joshi OP, 2014. Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agricultural Research, 3(1):53-66.
Romera FJ, Lucena C and Alcàntara E, 2006. Plant hormones influencing iron uptake in plants. Pp. 251-278, In: Barton LL, Abadia J (eds). Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Netherlands.
Rana A, Saharan B, Nain L, Prasanna R and Shivay YS, 2012. Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil science and Plant Nutrition, 58(5): 573-582.
Seher BA, Ozturk L, Gokmen OO, Ro€mheld V, Cakmak I, 2011. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe (III) - phytosiderophore in Fe-deficient wheat plants. Physiologia Plantarum, 142, 287-296.
Shariati S, and AlikhaniA, 2014. The application of Pseudomonas fluorescens bacteria inoculants on certain growth indices and nutrient uptake in maize. Journal of Sustainable Agriculture and Production Science, 24 (4): 45-59. (In Persion).
Shrivastava S, Egamberdieva D and Varma A, 2015. Plant growth-promoting rhizobacteria (PGPR) and medicinal plants: The State of the Art. Pp. 1-16, In: Egamberdieva D, Shrivastava S, Varma A (eds). Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer International Publishing.
Somers E, Vanderleyden J, and Srinivasan M, 2004. Rhizosphere bacterial signalling: a love parade beneath our feet. Critical Reviews in Microbiology, 30(4): 205-240.
Tale Ahmad S and Haddad R, 2011. Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Czech Journal of Genetics and Plant Breeding, 47(1):17-27.
Wei X, Shao M, Zhuang J, and Horton R, 2010. Soil iron fractionation and availability at selected landscape positions in a loessial gully region of northwestern China. Soil Science and Plant Nutrition, 56(4): 617-626.
Xue N, Seip HM, Guo J, Liao B, and Zeng Q, 2006. Distribution of Al-, Fe-and Mn-pools and their correlation in soils from two acid deposition small catchments in Hunan, China. Chemosphere, 65(11):2468-2476.
Zhang C, and Kong F, 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology. 82: 18-25. | ||
آمار تعداد مشاهده مقاله: 615 تعداد دریافت فایل اصل مقاله: 1,166 |