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Abstract The Chebyshev finite difference method is applied to solve a system of two coupled
nonlinear Lane-Emden differential equations arising in mathematical modelling of

the excess sludge production from wastewater treatment plants. This method is
based on a combination of the useful properties of Chebyshev polynomials approxi-
mation and finite difference method. The approach consists of reducing the problem
to a set of algebraic equations. Numerical results are included to demonstrate the va-

lidity and applicability of the technique and a comparison is made with the existing
results.
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1. Introduction

Domestic and industrial wastewater have a rich concentration of biodegradable
carbonaceous organics (carbon substrate). Activated sludge is the primary method
for treatment of organic wastes [1]. This biological method can efficiently oxidize
carbon substrate and transform it into new cells (sludge), CO2 and H2O. Excess
sludge is the main by-product that is costly to treat and dispose. About half of
the total cost of wastewater treatment is accounted for the produced excess sludge
treatment and disposal [17]. Thus, it is crucial to investigate a new method for
minimization of sludge production. The amount of sludge is mainly influenced by the
concentrations of carbon substrate and oxygen [1].
In this paper, following [1, 5, 10, 14, 16], we consider a system of two coupled nonlinear
Lane-Emden differential equations, that governs the concentrations of oxygen and the
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carbon substrate. This system models the excess sludge production from wastewater
treatment plants and is given by

x
d2u

dx2
+ 2

du

dx
= −α2x+ xF1(u(x), v(x)), (1.1)

x
d2v

dx2
+ 2

dv

dx
= xF2(u(x), v(x)), (1.2)

subject to the two mixed sets of Neumann and Dirichlet boundary conditions:

u′(0) = 0, u(1) = 1, v′(0) = 0, v(1) = 1, (1.3)

where x denotes the radius of a spherical floc particle. Also, the functions u(x) and
v(x) are the concentrations of carbon substrate and oxygen, respectively. Moreover,
F1, F2 are given by

F1(u(x), v(x)) = α1
u(x)v(x)

(ℓ1 + u(x))(m1 + v(x))
+ α3

u(x)v(x)

(ℓ2 + u(x))(m2 + v(x))
,

(1.4)

F2(u(x), v(x)) = α4
u(x)v(x)

(ℓ1 + u(x))(m1 + v(x))
+ α5

u(x)v(x)

(ℓ2 + u(x))(m2 + v(x))
.

(1.5)

Here ℓ1, ℓ2,m1,m2 and αi, i = 1, 2, .., 5 are some known constants.
The literature of numerical analysis contains little on the solutions of this prob-

lem. Muthukumar et al. [10] used the Adomian decomposition method and Duan
et al. [5] employed the Adomian decomposition method combined with the Duan-
Rach modified recursion scheme. Also, variational iteration method [5] is used to
solve this problem. Recently, Saadatmandi and Fayyaz [14] solved this problem by
sinc-collocation method.

In this work, a different approach is used. Our idea is to apply the Chebyshev
finite difference (ChFD) method to discretize the problem (1.1)-(1.3) to get a non-
linear system of algebraic equations, thus greatly simplifying the problem. The main
advantage of this method lies in its accuracy for a given number of unknowns. Cheby-
shev polynomials are well-known family of orthogonal polynomials on the interval
[−1, 1]. These polynomials present very good properties in the approximation of
functions. Therefore, Chebyshev polynomials appear frequently in numerical com-
putation (e.g., see [2, 11]). ChFD method can be regarded as a nonuniform finite
difference scheme [6]. In this method the derivative of the function u(t) at a point
tj is a linear combination of the values of the function u at the Chebyshev-Gauss-
Lobatto points tk = cos(kπ/N), where k, j = 0, 1, 2, ..., N. This method can obtain
a better approximation and satisfactory simulation results than finite difference and
finite elements methods because the approximation of the derivatives is defined over
the whole domain [6, 7]. As pointed by [8], in this method, the error decreases ex-
ponentially. ChFD method has been recognized as a powerful tool for problems in
applied physics and engineering. This method has been extended to handle boundary
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value problems [6], boundary layer equations [7], heat transfer problem [9], a problem
arising from chemical reactor theory [12], problems in calculus of variation [13], Fred-
holm integro-differential equation [4] and the flow of a third-grade fluid in a porous
half space [15].

The outline of the paper is as follows. In section 2, we review the basic formulation
of ChFD method. In sections 3, we present a computational method for solving the
problem (1.1)-(1.3) by ChFD method. In section 4 some numerical results are given
to clarify the method and a comparison is made with existing results. Finally, we
conclude the paper in section 5.

2. Chebyshev finite difference method

Consider the Chebyshev polynomial of the first kind of degree n given by the
formula:

Tn(t) = cos(n cos−1 t), t ∈ [−1, 1].

The well known Chebyshev-Gauss-Lobatto points are given by [3]

tk = cos

(
kπ

N

)
, k = 0, 1, 2, ..., N. (2.1)

These grid (interpolation) points, tN = −1 < tN−1 < ... < t1 < t0 = 1 are also viewed

as the zeros of (1− t2)Ṫ (t), where Ṫ (t) is the first derivative of Tn(t).
Authors of [3] introduced the following approximation of the function u(t),

uN (t) =

N∑
n=0

′′anTn(t), an =
2

N

N∑
j=0

′′u(tj)Tn(tj). (2.2)

Here, the summation symbol with double primes denotes a sum with both the first
and last terms halved. Also, the derivatives of the function u(t) at the point tk are
given by [6, 7]

u
(n)
N (tk) ≈

N∑
j=0

d
(n)
k,ju(tj), n = 1, 2. (2.3)

where d
(1)
k,j and d

(2)
k,j for k, j = 0, 1, ..., N, are given by

d
(1)
k,j =

4θj
N

N∑
n=0

n−1∑
ℓ=0

(n+ℓ)odd

nθn
cℓ

Tn(tj)Tℓ(tk), (2.4)

d
(2)
k,j =

2θj
N

N∑
n=0

n−2∑
ℓ=0

(n+ℓ)even

n(n2 − ℓ2)θn
cℓ

Tn(tj)Tℓ(tk), (2.5)

with θ0 = θN = 1/2, θj = 1 for j = 1, 2, ..., N − 1, and c0 = 2, ci = 1, for i ≥ 1.
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3. Applying the ChFD method to the problem (1.1)-(1.3)

In this section, we solve problem (1.1)-(1.3) by using ChFD method. The domain
is 0 ≤ x ≤ 1. Using the algebraic mapping t = 2x − 1, the domain [0, 1] is mapped
into the computational domain [−1, 1] and the Eqs. (1.1)-(1.3) are transformed into
the following equations:

4(t+ 1))u′′ + 8u′ = −α2(t+ 1) + (t+ 1)F1(u(t), v(t)), (3.1)

4(t+ 1))v′′ + 8v′ = (t+ 1)F2(u(t), v(t)), (3.2)

u′(−1) = 0, u(1) = 1, v′(−1) = 0, v(1) = 1. (3.3)

Now using Eq. (2.3) to approximate u(t) and v(t) as

uN (t) =
N∑

n=0

′′λnTn(t), vN (t) =
N∑

n=0

′′µnTn(t), (3.4)

where

λn =
2

N

N∑
j=0

′′u(tj)Tn(tj), µn =
2

N

N∑
j=0

′′v(tj)Tn(tj). (3.5)

Substituting Eq. (3.4) into Eqs. (3.1)-(3.2) and evaluating the result at the Gauss-
Lobatto nodes tk for k = 1, ..., N − 1, we obtain

N∑
j=0

{
4(tk + 1)d

(2)
k,j + 8d

(1)
k,j

}
u(tj) = −α2(tk+1)+(tk+1)F1(u(tk), v(tk)), (3.6)

N∑
j=0

{
4(tk + 1)d

(2)
k,j + 8d

(1)
k,j

}
v(tj) = (tk + 1)F2(u(tk), v(tk)), (3.7)

where d
(1)
k,j and d

(2)
k,j are given in Eqs. (2.4) and (2.5) respectively. For k = 0 and

k = N by using the boundary conditions (3.3) we get

N∑
j=0

d
(1)
N,ju(tj) = 0, u(t0) = 1,

N∑
j=0

d
(1)
N,jv(tj) = 0, v(t0) = 1. (3.8)

Eqs. (3.6) and (3.7) together with Eq. (3.8) generate 2N + 2 non-linear algebraic
equations which can be solved for the unknown coefficients u(tk) and v(tk) for k =
0, ..., N . Throughout this paper, we use the Maple’s fsolve command for solving this
non-linear system. Consequently uN (t) and vN (t) given in Eq. (3.4) can be calculated.
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Figure 1. Plot of the approximate solutions u4(x) (left) and v4(x) (right).

4. Results and discussion

This section is devoted to the presentation of some numerical simulations obtained
by applying the ChFD method. Following [5], in order to evaluate the accuracy of
our approximate solutions, we construct the error remainder functions

ER1,N (x) = x
d2uN

dx2
+ 2

duN

dx
+ α2x− xF1(uN (x), vN (x)), (4.1)

ER2,N (x) = x
d2vN
dx2

+ 2
dvN
dx

− xF2(uN (x), vN (x)), (4.2)

and the maximal error remainder parameters

MER1,N = max
0≤x≤1

|ER1,N (x)|, MER2,N = max
0≤x≤1

|ER2,N (x)|, (4.3)

whenever the solutions are unknown in advance. Here, we have shown the approximate
solutions of problem (1.1)-(1.3) for some typical values of parametersm1 = ℓ1 = m2 =
ℓ2 = 0.0001, α1 = 5, α2 = 1, α3 = 0.1, α4 = 0.1 and α5 = 0.05 as in [5, 10, 16]. In
Figure 1 the approximate solutions uN (x) and vN (x) are plotted for N = 4. Also,
in Figure 2, the curves of the error remainder functions ER1,N (x) and ER2,N (x) are
plotted for N = 9. To make a comparison, in Table 1, we compare the maximal
error remainder parameters MER1,N and MER2,N , for different values of N , together
with the result obtained by using the Adomian decomposition method combined with
the Duan-Rach modified recursion scheme given in [5]. From Table 1, we see that
the present method is clearly reliable if compared with the Adomian decomposition
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Figure 2. Plot of error remainder functions ER1,9(x) (left) and
ER2,9(x) (right).

method. Furthermore, to show the efficiency of our method we define the norm of
remainder functions as follows:

∥MER1,N∥2 =

(∫ 1

0

(ER1,N (x))2dx

)1/2

,

∥MER2,N∥2 =

(∫ 1

0

(ER2,N (x))2dx

)1/2

.

The logarithmic graphs of ∥MER1,N∥2 and ∥MER2,N∥2 of the present method for
different values of N are shown in Figure 3. From this figure, it is found that by
increasing N the norm of remainder functions decrease. Also, Figure 3 illustrates the
accuracy of the present method.

5. Conclusion

An alternative method for solving the system models the excess sludge production
from wastewater treatment plants is proposed in this article. Our approach was
based on the Chebyshev finite difference method. The new described computational
technique produces very accurate results even with a small number of collocation
points. The results presented indicate that the ChFD method provides powerful tool
to solve the system of two coupled nonlinear Lane-Emden differential equations, that
governs the concentrations of oxygen and the carbon substrate.
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Table 1. Comparison of the maximal error remainder parameters
MER1,N and MER2,N .

MER1,N MER2,N

N Method in Ref. [5] ChFD method Method in Ref. [5] ChFD method
2 1.18506× 10−3 5.45255× 10−4 3.48547× 10−5 1.60369× 10−5

3 8.53760× 10−4 1.25562× 10−4 2.51106× 10−5 3.69301× 10−6

4 6.21465× 10−4 3.64959× 10−5 1.82784× 10−5 1.07341× 10−6

5 4.52526× 10−4 3.11908× 10−5 1.33096× 10−5 9.17378× 10−7

6 3.29508× 10−4 6.84916× 10−6 9.69142× 10−6 2.01446× 10−7

7 2.39928× 10−4 1.15556× 10−6 7.05670× 10−6 3.39872× 10−8

Figure 3. Graphs of ∥MER1,N∥2 (left) and ∥MER2,N∥2 (right) for
different values of N.
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