تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,587 |
تعداد دریافت فایل اصل مقاله | 15,217,079 |
Center manifold analysis and Hopf bifurcation of within-host virus model | ||
Computational Methods for Differential Equations | ||
مقاله 1، دوره 6، شماره 3، مهر 2018، صفحه 266-279 اصل مقاله (579.53 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Hossein Mohebbi* 1؛ Azim Aminataei1؛ Hossein Pourbashash2؛ Anjila Ataei Pirkooh3 | ||
1Department of Applied Mathematics, Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box: 16315-1618, Tehran, Iran | ||
2Department of Mathematics, University of Garmsar, P. O. Box: 3581755796, Garmsar, Iran | ||
3Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran | ||
چکیده | ||
A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there exists a unique infectious equilibrium which may or may not be stable. In the case of instability, there exists an asymptotically stable periodic solution. Secondly, an analysis of local center manifold shows that when R0 = 1, a transcritical bifurcation occurs where upon increasing R0 greater than one the DFE loses stability and a locally asymptotically positive infection equilibrium appears. | ||
کلیدواژهها | ||
Within-host virus model؛ Local and global stability؛ Center manifold؛ Reproduction number؛ Hopf Bifurcation | ||
آمار تعداد مشاهده مقاله: 467 تعداد دریافت فایل اصل مقاله: 527 |