تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,584 |
تعداد دریافت فایل اصل مقاله | 15,217,073 |
Numerical studies of non-local hyperbolic partial differential equations using collocation methods | ||
Computational Methods for Differential Equations | ||
مقاله 5، دوره 6، شماره 3، مهر 2018، صفحه 326-338 اصل مقاله (492.53 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
khalid Karam Ali* 1؛ Kamal Raslan Raslan1؛ Adel Rashad Hadhoud2 | ||
1Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City (11884), Cairo, Egypt | ||
2Mathematics Department, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt. | ||
چکیده | ||
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accuracy and stability of the methods are assessed by applying it to the test problem. The results are found to be in good agreement with known solutions and with existing collocation schemes in literature. | ||
کلیدواژهها | ||
Collocation methods؛ Exponential cubic B-spline؛ Quintic B-spline؛ Finite difference؛ Wave equation | ||
آمار تعداد مشاهده مقاله: 454 تعداد دریافت فایل اصل مقاله: 434 |