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Abstract In this paper, we apply Legendre wavelet collocation method to obtain the ap-

proximate solution of nonlinear Stratonovich Volterra integral equations. The main
advantage of this method is that Legendre wavelet has orthogonality property and
therefore coefficients of expansion are easily calculated. By using this method, the
solution of nonlinear Stratonovich Volterra integral equation reduces to the nonlin-

ear system of algebraic equations which can be solved by using a suitable numerical
method such as Newton’s method. Convergence analysis with error estimate are
given with full discussion. Also, we provide an upper error bound under weak as-
sumptions. Finally, accuracy of this scheme is checked with two numerical examples.

The obtained results reveal efficiency and capability of the proposed method.
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1. Introduction

In stochastic processes, stochastic integrals are divided into two parts; Itô integral
and Stratonovich integral. The Itô integral named after Kiyoshi Itô and usually is
used in applied mathematics whereas the Stratonovich integral developed simultane-
ously by R. L. Stratonovich [19] and D. L. Fisk [5] and is frequently applied in physics.
Stratonovich calculus has some advantages to Itô calculus, for example, in some po-
sitions, integrals in the Stratonovich definition are easier to manipulate. Unlike the
Itô calculus, Stratonovich integrals are defined such that the chain rule of ordinary
calculus hold. Because of this feature has satisfied, stochastic differential equations in
the Stratonovich sense are more straightforward to define on differentiable manifolds.
Stochastic integral equations can rarely be solved in analytic form and therefore pro-
vide a numerical method for solving them is an essential requirement in applied
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mathematics. In recent years, various numerical methods such as finite difference
method [4], radial basis function method [2], Galerkin method [9], operational matrix
method [6, 11, 12, 16], Legendre wavelets Galerkin method [7], linear analytic ap-
proximation method [8], collocation method [10], orthonormal Bernstein polynomial
method [13], wavelet-based computational method [17], Euler method [20], Cheby-
shev wavelet method [1] are used to solve ordinary and stochastic integral equations.
But the number of papers on the numerical solution of stochastic integral equations
are still very few. Also, few researchers have worked on numerical method for solv-
ing Stratonovich integral equations. Recently Mirzaee and Samadyar have applied
operational matrix method for solving nonlinear Stratonovich Volterra integral equa-
tion [15] and system of linear Stratonovich Volterra integral equations [14].
In this paper, we solve the specific case of nonlinear Stratonovich Volterra integral
equation as follows

X(t) = X0 + λ1

∫ t

0

a
(
s,X(s)

)
ds+ λ2

∫ t

0

b
(
s,X(s)

)
◦dB(s), (1.1)

where t ∈ [0, 1), λ1 and λ2 are constant parameters, a
(
s,X(s)

)
and b

(
s,X(s)

)
are

known functions, X(t) is unknown function which should be determined and B(t)
is Brownian motion process defined on probability space (Ω,F , P ) consisting of the
sample space Ω, a σ-algebra F of subsets of Ω called events, and a real-valued set
function P defined on F called a probability. Note that the symbol ◦ between inte-
grand and the stochastic differential is used to show Stratonovich integral.
Eq. (1.1) arise in many applications such as mathematical finance, engineering, biol-
ogy, medical, and social sciences. Solving this equation analytically is very difficult or
even sometimes impossible, so we develop an efficient numerical method to solve it. In
this paper, operational matrix of integration and stochastic operational matrix of in-
tegration based on Legendre wavelet are used to solve Eq. (1.1) numerically. By using
these matrices and collocation points this equation converts to the nonlinear system
of algebraic equations which can be solved by using a suitable numerical method such
as Newton’s method. Also, we know that the Stratonovich integral equations can be
transformed to Itô integral equations. The existence and uniqueness of the solution
of Itô integral equations is discussed in [3].
The reminder of this work is organized as follows. In Section 2, we obtain some el-
ementary definitions and properties of wavelet and Legendre wavelet. Operational
matrix of integration and stochastic operational matrix of integration are obtained
in this section. In Section 3, the proposed method are used to estimate the solution
of linear Stratonovich Volterra integral equation. In Section 4, convergence analysis
of the proposed method is proved. Numerical examples are included in Section 5.
Finally, we give the conclusion of this paper in Section 6.

2. Wavelet and Legendre wavelet

Wavelets are a family of functions which are constructed from dilation and trans-
lation of a single function ψ called the mother wavelet. When the dilation parameter
a and the translation parameter b vary continuously, we have the following family of
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continuous wavelets [18]

ψa,b(t) = |a|− 1
2ψ

( t− b

a

)
, a, b ∈ R, a ̸= 0. (2.1)

If we restrict the dilation parameter a and translation parameter b to discrete values
as a = a−k0 , b = nb0a

−k
0 , a0 > 1, b0 > 0, where n and k are positive integer numbers,

the family of discrete wavelets are constructed as

ψk,n(t) = |a0|
k
2ψ(ak0t− nb0), n, k ∈ Z+, (2.2)

where ψk,n(t) form a wavelet basis for L2(R). When a0 = 2 and b0 = 1, the functions
ψk,n(t) form an orthonormal basis.
Legendre wavelets ψn,m(t) = ψ(k, n,m, t) have four arguments; n = 1, 2, . . . , 2k−1,
k is assumed to be any positive integer numbers, m is the degree of the Legendre
polynomials and t is on the interval [0, 1). They are defined on the interval [0, 1) as
follows

ψn,m(t) =

{√
m+ 1

22
k
2 Pm(2kt− 2n+ 1), 2n−2

2k
≤ t < 2n

2k
,

0, otherwise,
(2.3)

where m = 0, 1, . . . ,M − 1 and n = 1, 2, . . . , 2k−1 and Pm(t) are the Legendre poly-
nomials of degree m. These polynomials are orthogonal with respect to the weight
function w(t) = 1, on the interval [−1, 1] and satisfy the following recursive relation [7]

P0(t) = 1,

P1(t) = t,

...

Pm+1(t) =
(2m+ 1

m+ 1

)
tPm(t)−

( m

m+ 1

)
Pm−1(t), m = 1, 2, 3, . . . .

2.1. Function approximation. We consider the set of Legendre wavelet as

Ψ(t) =
[
ψ1,0(t), ψ2,0(t), . . . , ψ2k−1,0(t), ψ1,1(t), . . . , ψ2k−1,1(t)

, . . . , ψ1,M−1(t), . . . , ψ2k−1,M−1(t)
]T⊂ L2[0, 1], (2.4)

and suppose that

Y = span{ψ1,0(t), ψ2,0(t), . . . , ψ2k−1,0(t), ψ1,1(t), . . . , ψ2k−1,1(t)

, . . . , ψ1,M−1(t), . . . , ψ2k−1,M−1(t)},

also, suppose that f be an arbitrary function in L2[0, 1]. Because Y is a finite dimen-
sional vector space, so f has the best approximation out of Y such as f∗ ∈ Y , that
is

∀g ∈ Y, ∥f − f∗∥ ≤ ∥f − g∥.
Since f∗ ∈ Y , there exist unique coefficients c1,0, c2,0, . . . , c2k−1,M−1 such that

f(t) ≃ f∗(t) =
M−1∑
m=0

2k−1∑
n=1

cn,mψn,m(t) = CTΨ(t), (2.5)
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where Ψ(t) is a vector of order 2k−1M ×1 defined in Eq. (2.4) and C is an 2k−1M ×1
vector given by

C = [c1,0, c2,0, . . . , c2k−1,0, . . . , c1,M−1, . . . , c2k−1,M−1]
T . (2.6)

Also, the coefficients cn,m in Eq. (2.5) can be computed from the following relation

cn,m = ⟨ f, ψn,m⟩ =
∫ 1

0

f(t)ψn,m(t)dt. (2.7)

2.2. Operational matrix of integration. We can approximate the integration of
the Ψ(t) defined in Eq. (2.4) as follows∫ t

0

Ψ(s)ds ≃ PΨ(t), (2.8)

where P is a matrix of order 2k−1M × 2k−1M and is named operational matrix of
integration. For example, for k = 2 and M = 3, we have

Ψ(t) = [ψ1,0(t), ψ2,0(t), ψ1,1(t), ψ2,1(t), ψ1,2(t), ψ2,2(t)]
T , (2.9)∫ t

0

ψ1,0(s)ds =

{√
2t 0 ≤ t < 1

2√
2
2

1
2 ≤ t < 1

≃ 1

4
ψ1,0(t) +

1

2
ψ2,0(t) +

1

4
√
3
ψ1,1(t), (2.10)

∫ t

0

ψ2,0(s)ds =

{
0 0 ≤ t < 1

2√
2(t− 1

2 )
1
2 ≤ t < 1

≃ 1

4
ψ2,0(t) +

1

4
√
3
ψ2,1(t), (2.11)

∫ t

0

ψ1,1(s)ds =

{√
6
(
2t2 − t

)
0 ≤ t < 1

2

0 1
2 ≤ t < 1

≃ −1

4
√
3
ψ1,0(t) +

√
6

12
√
10
ψ1,2(t), (2.12)

∫ t

0

ψ2,1(s)ds =

{
0 0 ≤ t < 1

2√
6
(
2t2 − 3t+ 1

)
1
2 ≤ t < 1

≃ −1

4
√
3
ψ2,0(t) +

√
6

12
√
10
ψ2,2(t), (2.13)

∫ t

0

ψ1,2(s)ds =

{√
10
(
8t3 − 6t2 + t

)
0 ≤ t < 1

2

0 1
2 ≤ t < 1

≃ −
√
6

12
√
10
ψ1,1(t) +

√
10

20
√
14
ψ1,3(t), (2.14)
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∫ t

0

ψ2,2(s)ds =

{
0 0 ≤ t < 1

2√
10
(
8t3 − 18t2 + 13t− 3

)
1
2 ≤ t < 1

≃ −
√
6

12
√
10
ψ2,1(t) +

√
10

20
√
14
ψ2,3(t). (2.15)

By applying Eqs. (2.9)-(2.15) and omitting the terms ψ1,3(t) and ψ2,3(t), we con-
clude

∫ t

0

Ψ(s)ds ≃



1
4

1
2

1
4
√
3

0 0 0

0 1
4 0 1

4
√
3

0 0
−1
4
√
3

0 0 0
√
6

12
√
10

0

0 −1
4
√
3

0 0 0
√
6

12
√
10

0 0 −
√
6

12
√
10

0 0 0

0 0 0 −
√
6

12
√
10

0 0


Ψ(t).

In general, we can demonstrate operational matrix of integration P is in the fol-
lowing form

P =
1

2k



P0 A1 O O · · · O
−A1 O A2 O · · · O
O −A2 O A3 · · · O
...

. . .
. . .

. . .
. . .

...
O · · · O −AM−2 O AM−1

O · · · O O −AM−1 O


, (2.16)

where O is a zero matrix of order 2k−1×2k−1 and P0 is a matrix of order 2k−1×2k−1

defined as

P0 =



1 2 2 · · · 2 2
0 1 2 · · · 2 2

0 0 1
. . . 2 2

...
...

...
. . .

. . .
...

0 0 0 · · · 1 2
0 0 0 · · · 0 1


,

and Ai is an 2k−1 × 2k−1 matrix defined as follows

Ai = diag
( 1√

(2i− 1)(2i+ 1)

)
, i = 1, 2, . . . ,M − 1.

By using Eqs. (2.5) and (2.8), we can approximate integral of every function f as
follows ∫ t

0

f(s)ds ≃
∫ t

0

CTΨ(s)ds ≃ CTPΨ(t). (2.17)
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2.3. Stochastic operational matrix of integration. The Stratonovich integral of
Ψ(t) can be approximated as follows∫ t

0

Ψ(s) ◦ dB(s) ≃ PsΨ(t), (2.18)

where Ps is an 2k−1M × 2k−1M matrix and is called stochastic operational matrix of
integration. For example, for k = 2 and M = 3, we obtain∫ t

0

ψ1,0(s) ◦ dB(s) =

{√
2B(t) 0 ≤ t < 1

2√
2B( 12 )

1
2 ≤ t < 1

≃ B(
1

4
)ψ1,0(t) +B(

1

2
)ψ2,0(t), (2.19)

∫ t

0

ψ2,0(s) ◦ dB(s) =

{
0 0 ≤ t < 1

2√
2
(
B(t)−B( 12 )

)
1
2 ≤ t < 1

≃
(
B(

3

4
)−B(

1

2
)
)
ψ2,0(t), (2.20)

∫ t

0

ψ1,1(s) ◦ dB(s) =

{√
6
(
4t− 1

)
B(t)−

∫ t

0
4
√
6B(s)ds 0 ≤ t < 1

2√
6B( 1

2
)−

∫ 1
2

0
4
√
6B(s)ds 1

2
≤ t < 1

≃
(
− 1√

2

∫ 1
4

0

4
√
6B(s)ds

)
ψ1,0(t)

+
(√6B( 1

2
)−

∫ 1
2
0

4
√
6B(s)ds

√
2

)
ψ2,0(t) +B(

1

4
)ψ1,1(t), (2.21)

∫ t

0

ψ2,1(s) ◦ dB(s) =

{
0 0 ≤ t < 1

2√
6
[(
4t− 3

)
B(t) +B( 1

2
)−

∫ t
1
2
4B(s)ds

]
1
2
≤ t < 1

≃
(√6B( 1

2
)−

∫ 3
4
1
2

4
√
6B(s)ds

√
2

)
ψ2,0(t) +B(

3

4
)ψ2,1(t), (2.22)

∫ t

0

ψ1,2(s) ◦ dB(s) =


√
10

[
(24t2 − 12t+ 1)B(t)−

∫ t

0
(48s− 12)B(s)ds

]
0 ≤ t < 1

2√
10B( 1

2
)−

∫ 1
2

0

√
10(48s− 12)B(s)ds 1

2
≤ t < 1

≃
(
−
∫ 1

4
0

√
10(48s− 12)B(s)ds

√
2

)
ψ1,0(t)

+
(√10B( 1

2
)−

∫ 1
2

0

√
10(48s− 12)B(s)ds
√
2

)
ψ2,0(t)

+B(
1

4
)ψ1,2(t), (2.23)
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∫ t

0

ψ2,2(s) ◦ dB(s) =

{
0 0 ≤ t < 1

2√
10

[
(24t2 − 36t+ 13)B(t)−B( 1

2
)−

∫ t
1
2
(48s− 36)B(s)ds

]
1
2
≤ t < 1

≃
(
−

√
10B( 1

2
) +

∫ 3
4
1
2

√
10(48s− 36)B(s)ds
√
2

)
ψ2,0(t)

+B(
3

4
)ψ2,2(t). (2.24)

Now, by using Eqs. (2.19)-(2.24), we have
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∫ t 0

Ψ
(s
)
◦
d
B
(s
)
≃

              

B
(
1 4
)

B
(
1 2
)

0
0

0
0

0
B
(
3 4
)
−
B
(
1 2
)

0
0

0
0

−
1 √
2

∫1 4 0
4
√
6B

(s
)d
s

√
6
B
(
1 2
)−

∫1 2
0

4
√
6
B
(s
)d
s

√
2

B
(
1 4
)

0
0

0

0

√
6
B
(
1 2
)−

∫3 4 1 2

4
√
6
B
(s
)d
s

√
2

0
B
(
3 4
)

0
0

−
∫1 4
0

√
1
0
(4

8
s
−
1
2
)B

(s
)d
s

√
2

√
1
0
B
(
1 2
)−

∫1 2
0

√
1
0
(4

8
s
−
1
2
)B

(s
)d
s

√
2

0
0

B
(
1 4
)

0

0
−

√
1
0
B
(
1 2
)+

∫3 4 1 2

√
1
0
(4

8
s
−
3
6
)B

(s
)d
s

√
2

0
0

0
B
(
3 4
)              

︸
︷︷

︸
P

s

Ψ
(t
).
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In general, we get Ps as follows

Ps =


P1 O O · · · O
C1 D O · · · O
C2 O D · · · O
...

...
...

. . .
...

CM−1 O O · · · D

 , (2.25)

where O is a zero matrix of order 2k−1 × 2k−1 and

D =


B( 1

2k
) 0 · · · 0

0 B( 3
2k
) · · · 0

...
...

. . .
...

0 0 · · · B( 2
k−1
2k

)

 ,

and

P1 =


B( 1

2k
) B( 2

2k
) B( 2

2k
) · · · B( 2

2k
)

0 B( 3
2k

)−B( 2
2k

) B( 4
2k

)−B( 2
2k

) · · · B( 4
2k

)−B( 2
2k

)
0 0 B( 7

2k
)−B( 6

2k
) · · · B( 8

2k
)−B( 6

2k
)

...
...

...
. . .

...

0 0 0 · · · B( 2
k−1
2k

)−B( 2
k−2
2k

)

 ,

and for i = 1, 2, . . . ,M − 1,
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C
i
=

             −
∫1 2

k
0

(ψ
1
,i
(t
))

′ B
(t
)d
t

2
k
−

1
2

ψ
1
,i
(

2 2
k

+
)B

(
2 2
k
)−

∫2 2
k

0
(ψ

1
,i
(t
))

′ B
(t
)d
t

2
k
−

1
2

··
·

ψ
1
,i
(

2 2
k

+
)B

(
2 2
k
)−

∫2 2
k

0
(ψ

1
,i
(t
))

′ B
(t
)d
t

2
k
−

1
2

0
−
ψ

2
,i
(

2 2
k

+
)B

(
2 2
k
)−

∫3 2
k

2 2
k

(ψ
2
,i
(t
))

′ B
(t
)d
t

2
k
−

1
2

··
·

ψ
2
,i
(

4 2
k

+
)B

(
4 2
k
)−
ψ

2
,i
(

2 2
k

+
)B

(
2 2
k
)−

∫4 2
k

2 2
k

(ψ
2
,i
(t
))

′ B
(t
)d
t

2
k
−

1
2

. . .
. . .

. .
.

. . .

0
0

··
·

−
ψ

n
,i
(
2
k
−

2

2
k

+
)B

(
2
k
−

2

2
k

)−
∫2k

−
1

2
k

2
k
−

2

2
k

(ψ
n
,i
(t
))

′ B
(t
)d
t

2
k
−

1
2

             ,
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where for r = 1, 2, . . . , k

ψi,j(
2r − 2

2r

+

) = lim
t→ 2r−2

2r
+
ψi,j(t).

The Stratonovich integral of every arbitrary function f can be approximated as follows∫ t

0

f(s) ◦ dB(s) ≃
∫ t

0

CTΨ(s) ◦ dB(s) ≃ CTPsΨ(t). (2.26)

3. Description of the proposed computational method

In this section, we consider nonlinear Stratonovich Volterra integral equation (1.1).
For solving this equation, we apply operational matrices of integration based on Le-
gendre wavelet. First, we let

z1(t) = a(t,X(t)), z2(t) = b(t,X(t)). (3.1)

From Eqs. (1.1) and (3.1), we have{
z1(t) = a

(
t,X0 + λ1

∫ t
0
z1(s)ds+ λ2

∫ t
0
z2(s) ◦ dB(s)

)
,

z2(t) = b
(
t,X0 + λ1

∫ t
0
z1(s)ds+ λ2

∫ t
0
z2(s) ◦ dB(s)

)
.

(3.2)

We approximate z1(t) and z2(t) by applying Legendre wavelet as follows

z1(t) ≃ AT1 Ψ(t), z2(t) ≃ AT2 Ψ(t), (3.3)

where Ψ(t) defined in Eq. (2.4) and A1 and A2 are Legendre wavelet coefficient
vectors of z1(t) and z2(t), respectively. Now, we substitute Eq. (3.3) into Eq. (3.2).
We get {

AT1 Ψ(t) = a
(
t,X0 + λ1

∫ t
0
AT1 Ψ(s)ds+ λ2

∫ t
0
AT2 Ψ(s) ◦ dB(s)

)
,

AT2 Ψ(t) = b
(
t,X0 + λ1

∫ t
0
AT1 Ψ(s)ds+ λ2

∫ t
0
AT2 Ψ(s) ◦ dB(s)

)
.

From Eqs. (2.8) and (2.18), we get{
AT1 Ψ(t) = a

(
t,X0 + λ1A

T
1 PΨ(t) + λ2A

T
2 PsΨ(t)

)
,

AT2 Ψ(t) = b
(
t,X0 + λ1A

T
1 PΨ(t) + λ2A

T
2 PsΨ(t)

)
.

(3.4)

Now, we collocate Eq. (3.4) at 2k−1M Newton-Cotes nodes defined as

ti =
2i− 1

2kM
, i = 1, 2, . . . , 2k−1M. (3.5)

Then, the solution of nonlinear Stratonovich Volterra integral equation reduces to the
solution of following nonlinear systems of algebraic equations{

AT1 Ψ(ti) = a
(
ti, X0 + λ1A

T
1 PΨ(ti) + λ2A

T
2 PsΨ(ti)

)
,

AT2 Ψ(ti) = b
(
ti, X0 + λ1A

T
1 PΨ(ti) + λ2A

T
2 PsΨ(ti)

)
.

(3.6)

This nonlinear system can be solved by using an appropriate numerical method such
as Newton’s method. After solving this nonlinear system and finding unknown vectors
A1 and A2, the approximate solution of Eq. (1.1) can be obtained by

X(t) = X0 + λ1A
T
1 PΨ(t) + λ2A

T
2 PsΨ(t).
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4. Convergence analysis and error estimate

Lemma 1. Let X(t) be a continuous function defined on [0, 1) and X∗(t) be the
approximation of X(t) by applying Legendre wavelet. Also, suppose that X(t) is
bounded by a positive constant η, i.e. |X(t)| < η. Then the Legendre wavelet
coefficients of X(t) are bounded as

|cn,m| ≤ η

2
k−2
2

√
m+

1

2
. (4.1)

Proof. Any arbitrary function X(t) ∈ L2([0, 1)) can be approximated by using the
Legendre wavelet as follows

X∗(t) =
M−1∑
m=0

2k−1∑
n=1

cn,mψn,m(t), (4.2)

where the coefficients cn,m can be determined as

cn,m = ⟨ X,ψn,m⟩ =
∫ 1

0

X(t)ψn,m(t)dt

= 2
k
2

√
m+

1

2

∫ 2n

2k

2n−2

2k

X(t)Pm(2kt− 2n+ 1)dt.

Now, by using change the variable 2kt− 2n+ 1 = u, we have

cn,m =
1

2
k
2

√
m+

1

2

∫ 1

−1

X
(u+ 2n− 1

2k

)
Pm(u)du. (4.3)

By using assumption |X(t)| < η, we have

|cn,m| = 1

2
k
2

√
m+

1

2

∣∣∣∫ 1

−1

X
(u+ 2n− 1

2k

)
Pm(u)du

∣∣∣
≤ 1

2
k
2

√
m+

1

2

∫ 1

−1

∣∣∣X(u+ 2n− 1

2k

)∣∣∣|Pm(u)|du

≤ η

2
k
2

√
m+

1

2

∫ 1

−1

|Pm(u)|du. (4.4)

On the other hand, |Pm(u)| ≤ 1,∀u ∈ [−1, 1]. So∫ 1

−1

|Pm(u)|du ≤ 2. (4.5)

By using Eqs. (4.4) and (4.5), we conclude

|cn,m| ≤ η

2
k−2
2

√
m+

1

2
.

�
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Theorem 4.1. Suppose X(t) be a continuous function defined on [0, 1) and X∗(t)
be the approximation of X(t) by using Legendre wavelet. Then we have the following
upper bound of error

∥X(t)−X∗(t)∥2 ≤
(M−1∑

m=0

∞∑
n=2k−1+1

(α(m))2
) 1

2
+
( ∞∑
m=M

∞∑
n=1

(α(m))2
) 1

2
, (4.6)

where

α(m) =
η

2
k−2
2

√
m+

1

2
. (4.7)

Proof. An arbitrary functionX(t) ∈ L2([0, 1)) can be expanded by using the Legendre
wavelet as follows

X(t) =
∞∑
m=0

∞∑
n=1

cn,mψn,m(t).

Suppose X∗(t) be the truncated Legendre wavelet expansion defined in Eq. (4.2).
Then the truncated error term can be calculated as

X(t)−X∗(t) =

M−1∑
m=0

∞∑
n=2k−1+1

cn,mψn,m(t) +

∞∑
m=M

∞∑
n=1

cn,mψn,m(t). (4.8)

On the other hand, ψn,m(t) have orthogonality property, i.e.,∫ 1

0

ψn,m(t)ψr,s(t)dt =

{
0 n ̸= r,m ̸= s,

1 n = r,m = s.
(4.9)

By applying Eqs. (4.8) and (4.9) and Lemma 1, conclude

∥X(t)−X∗(t)∥2 ≤
∥∥∥M−1∑
m=0

∞∑
n=2k−1+1

cn,mψn,m(t)
∥∥∥
2
+
∥∥∥ ∞∑
m=M

∞∑
n=1

cn,mψn,m(t)
∥∥∥
2

=
(∫ 1

0

∣∣∣M−1∑
m=0

∞∑
n=2k−1+1

cn,mψn,m(t)
∣∣∣2dt) 1

2

+
(∫ 1

0

∣∣∣ ∞∑
m=M

∞∑
n=1

cn,mψn,m(t)
∣∣∣2dt) 1

2

≤
(M−1∑

m=0

∞∑
n=2k−1+1

|cn,m|2
) 1

2
+
( ∞∑
m=M

∞∑
n=1

|cn,m|2
) 1

2

≤
(M−1∑

m=0

∞∑
n=2k−1+1

(α(m))2
) 1

2
+
( ∞∑
m=M

∞∑
n=1

(α(m))2
) 1

2
.

�
Theorem 4.2. Let X(t) and X∗(t) be the exact solution and the approximate so-
lution of Eq. (1.1), respectively. Moreover assume that functions a(t,X(t)) and
b(t,X(t)), satisfy the Lipschitz condition, i.e. there is a constant L where,

∥a(t,X(t))− a(t,X∗(t))∥2 + ∥b(t,X(t))− b(t,X∗(t))∥2 ≤ L∥X(t)−X∗(t)∥2. (4.10)
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Also, assume that

1− L
(
|λ1|+ |λ2|∥B(t)∥∞

)
> 0. (4.11)

Then, the upper error bound would be obtained as follows

∥X(t)−X∗(t)∥2 ≤ |λ1|β1(m) + |λ2|∥B(t)∥∞β2(m)

1− L
(
|λ1|+ |λ2|∥B(t)∥∞

) , (4.12)

where ∥∥∥a(t,X∗(t)
)
−a∗

(
t,X∗(t)

)∥∥∥
2
≤ β1(m),∥∥∥b(t,X∗(t)

)
−b∗

(
t,X∗(t)

)∥∥∥
2
≤ β2(m),

and β1(m) and β2(m) are obtained from Theorem 4.1.

Proof. Suppose that zi(t) and z
∗
i (t) be the exact solution and the approximate solution

of Eq. (3.2), respectively. Then we have

z∗1(t) = a∗
(
t,X∗(t)

)
, z∗2(t) = b∗

(
t,X∗(t)

)
, (4.13)

also, we define

ẑ1(t) = a
(
t,X∗(t)

)
, ẑ2(t) = b

(
t,X∗(t)

)
. (4.14)

According to Eq. (4.10) for i = 1, 2, we have

∥zi(t)− z∗i (t)∥2 ≤ ∥zi(t)− ẑi(t)∥2 + ∥ẑi(t)− z∗i (t)∥2 ≤ L∥X(t)−X∗(t)∥2 + βi(m).

(4.15)

Furthermore,

X(t) = X0 + λ1

∫ t

0

z1(s)ds+ λ2

∫ t

0

z2(s) ◦ dB(s),

X∗(t) = X0 + λ1

∫ t

0

z∗1(s)ds+ λ2

∫ t

0

z∗2(s) ◦ dB(s).

So,

∥X(t)−X∗(t)∥2 ≤ |λ1|∥z1(t)− z∗1(t)∥2 + |λ2|∥B(t)∥∞∥z2(t)− z∗2(t)∥2
≤ |λ1|

(
L∥X(t)−X∗(t)∥2 + β1(m)

)
+ |λ2|∥B(t)∥∞

(
L∥X(t)−X∗(t)∥2 + β2(m)

)
. (4.16)

By applying Eq. (4.11) , we have

∥X(t)−X∗(t)∥2 ≤ |λ1|β1(m) + |λ2|∥B(t)∥∞β2(m)

1− L
(
|λ1|+ |λ2|∥B(t)∥∞

) .

�
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Table 1. Numerical results of Example 5.1.

M=3,k=2 M=4,k=2
ti Exact Approximate Error Exact Approximate Error

0.0 0.50000000 0.51681700 0.01681700 0.50000000 0.46406247 0.03593752
0.1 0.62485278 0.54137869 0.08347409 0.55214132 0.48587488 0.06626643
0.2 0.65756740 0.56548209 0.09208530 0.59216016 0.50767980 0.08448036
0.3 0.64050650 0.58912721 0.05137928 0.62277744 0.52939085 0.09338658
0.4 0.64277721 0.61231403 0.03046317 0.63674930 0.55092162 0.08582768
0.5 0.63484394 0.55022209 0.08462184 0.62597896 0.57471701 0.05126194
0.6 0.62069731 0.57115107 0.04954623 0.67281937 0.59534008 0.07747929
0.7 0.59722355 0.59165301 0.00557053 0.67511074 0.61554205 0.05956869
0.8 0.59606938 0.61172791 0.01565853 0.65874043 0.63526485 0.02347557
0.9 0.59013957 0.63137576 0.04123619 0.58853005 0.65445040 0.06592034

5. Illustrative test problems

In this section, we present two examples to show accuracy and efficiency of the
proposed method. We compare the values of approximate solution and exact solution
at the some selected points via definition of absolute error which defined as

e(t) =
∣∣∣X(t)−X∗(t)

∣∣∣, t ∈ [0, 1), (5.1)

where X(t) and X∗(t) denote exact and approximate solution, respectively. Also, we
compare this method with Block-pulse method in paper [15].

Example 5.1. Consider the following nonlinear Stratonovich Volterra integral equa-
tion [15]

X(t) = 0.5 +

∫ t

0

X(s)
(
0.96875−X(s)

)
ds+

∫ t

0

0.25X(s) ◦ dB(s), t ∈ [0, 1], (5.2)

where X(t) is unknown stochastic process defined on the probability space (Ω,F , P ),
and B(t) is a Brownian motion process. The exact solution of this equation is as
follows

X(t) =
0.5 exp

(
0.96875t+ 0.25B(t)

)
1 + 0.5

∫ t
0
exp

(
0.96875s+ 0.25B(s)

)
ds
.

We report the values of exact and approximate solution at some points in Table 1.
Also, in Table 2, maximum absolute error obtained from present method and Block-
pulse method [15] is compared.

Example 5.2. Consider the following nonlinear Stratonovich Volterra integral equa-
tion [15]

X(t) = 1 +

∫ t

0

X3(s)ds+

∫ t

0

0.25X(s) ◦ dB(s), t ∈ [0, 1], (5.3)

where X(t) is unknown stochastic process defined on the probability space (Ω,F , P ),
and B(t) is a Brownian motion process. The exact solution of this equation is as
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Table 2. Comparison of maximum absolute error for Example 5.1.

Methods Em
Block-pulse method

n=4 0.30146607
n=8 0.13059298

Present method
M=3,k=2 0.09208530
M=4,k=2 0.09338658

Table 3. Numerical results of Example 5.2.

M=3,k=2 M=4,k=2
ti Exact Approximate Error Exact Approximate Error

0.0 1.00000000 1.04920729 0.04920729 1.00000000 1.00985549 0.00985549
0.1 0.81605830 0.95384236 0.13778406 0.85943213 0.92004934 0.06061720
0.2 0.76247127 0.87360818 0.11113691 0.75674073 0.84927527 0.09253454
0.3 0.71941158 0.80850475 0.08909317 0.69162951 0.79312805 0.10149853
0.4 0.61832343 0.75853207 0.14020864 0.57737828 0.74720241 0.16982413
0.5 0.52399925 0.56544977 0.04145052 0.49015291 0.65113354 0.16098063
0.6 0.51062701 0.55109972 0.04047271 0.44120839 0.62670257 0.18549417
0.7 0.45304151 0.53764140 0.08459988 0.42197050 0.60477576 0.18280526
0.8 0.42205036 0.52507479 0.10302443 0.34060181 0.58501805 0.24441624
0.9 0.39641390 0.51339992 0.11698601 0.31846102 0.56709437 0.24863334

Table 4. Comparison of maximum absolute error for Example 5.2.

Methods Em
Block-pulse method

n=4 0.22808556
n=8 0.30057406

Present method
M=3,k=2 0.14020864
M=4,k=2 0.24863334

follows

X(t) =
exp

(
0.25B(t)

)√
1 + 2

∫ t
0
exp

(
0.5B(s)

)
ds
.

We report the values of exact and approximate solution at some points in Table 3.
Also, in Table 4, maximum absolute error obtained from present method and Block-
pulse method [15] is compared.
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6. Conclusion

There are many stochastic integral equations which can not be solved analyti-
cally. In recent decade, many researcher are trying to develop the numerical methods
for solving stochastic integral equations such as Itô Volterra integral equation and
Stratonovich Volterra integral equations. In this paper, we calculate operational ma-
trix of integration and stochastic operational matrix of integration based on Legendre
wavelet. By applying these matrices, the nonlinear Stratonovich Volterra integral
equation reduces to nonlinear system of algebraic equations which can be solved by
using Newton’s method. Also, the error analysis of the present method were investi-
gated. In Section 5, we solve two examples by using present technique and finally com-
pare this method with Block-pulse method. Numerical results show present method
is more accurate than Block-pulse method.
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