تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,022 |
تعداد مشاهده مقاله | 52,493,464 |
تعداد دریافت فایل اصل مقاله | 15,219,749 |
A novel technique for a class of singular boundary value problems | ||
Computational Methods for Differential Equations | ||
مقاله 5، دوره 6، شماره 1، فروردین 2018، صفحه 40-52 اصل مقاله (413.61 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Mohammad Hadi Noori Skandari* 1؛ Mehrdad Ghaznavi2 | ||
1Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran | ||
2Faculty of Mathematical Sciences, Shahrood University of Sciences, Shahrood, Iran | ||
چکیده | ||
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time optimization problem to a discrete time optimization problem. By solving the discrete time optimization problem, we find discrete approximations for the solutions of the main singular boundary value problem. Also, by Lagrange interpolation we obtain a continuous approximation for the solution. The efficiency and the reliability of the proposed approach are tested by solving three practical singular boundary value problems. | ||
کلیدواژهها | ||
Singular boundary value problem؛ Chebyshev polynomial؛ Continuous time optimization problem؛ Discrete optimization problem | ||
آمار تعداد مشاهده مقاله: 649 تعداد دریافت فایل اصل مقاله: 518 |