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Abstract In this study, inverse nodal problem is solved for the p-Laplacian operator with two

potential functions. We present some asymptotic formulas which have been proved in
[17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential

function is unknown. Then, using the nodal points we reconstruct the potential

function and its derivatives. We also introduce a solution of inverse nodal problem
when the two potential functions are unknown.
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1. Introduction

In a typical inverse nodal problem, the operators are to be determined from the
given nodes(zeros) of their eigenfunctions. Mclaughlin seems to be the first to consider
this sort of inverse problem. This kind of problem is called inverse nodal problem. By
using nodal points which are zeros of eigenfunctions, she [23] showed that potential
function can be determined uniquely for the Sturm-Liouville problem. Especially,
inverse nodal problems were highly studied by many authors [4,6,7,19,25,26,28].
On the other hand, there are many studies of nonlinear operators such as the p-
Laplacian ∆py = div(|∆y|p−2∆y) with p > 1 on a bounded domain Ω ⊆ Rn. The
equation with p-Laplacian operator arises in some modeling of different physical
events; such as non-Newtonian mechanics [10,15], nonlinear elasticity and glaciol-
ogy [14], population biology [24], nonlinear flow laws [14], petroleum extraction [9].
Consider the following p-Laplacian equation

−∆pu+ q|u|p−2u = λ|u|p−2u,

with the condition

u|∂Ω = 0,

where p > 1, q ∈ L2(Ω) and Ω ⊆ RN . It shows a quasi-linear equation, when p 6= 2. In
linear and nonlinear case, two problems have the similiar properties when p = 2. For
examples, the Sturm-Liouville theory for p-Laplacian [2], the comparison theorem for
p-Laplacian [26] in one dimension, and a type of the Courant nodal domain theorem
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(q ≡ 0) [11] in high dimensional case also hold. But, two-Laplacian case is not the
same completely. For example, in one dimension the Fredholm alternative may not
hold [8]. Also, for a periodic boundary condition, there exist some non-variational
eigenvalues [1] and the multiplicity of the periodic eigenvalue can be arbitrary [3].
For the one-dimensional case and Ω = (0, 1), after some changing the problem turns
into the following problem

− [(u′)(p−1)]′ = (p− 1)(λ− q(x))u(p−1), u(0) = u(1) = 0, (1.1)

where u(p−1) := |u|p−1Sgn(u).
Inverse problems of the problem (1.1) have been investigated by several authors
[1,5,8,20,25,27].
For q = 0, let us consider

−[(u′)(p−1)]′ = (p− 1)λu(p−1),

u(0) = u(1) = 0.

In case of q = 0, the eigenvalues of the problem were [20]

λn = (nπp)
p, n = 1, 2, 3, ...,

where

πp = 2

∫ 1

0

dt

(1− tp)
1
p

=
2π

p sin(πp )
.

Its associated eigenfunction is denoted by Sp(x). This function and its derivative
S′p(x) are periodic functions satisfying

[Sp(x)]p + [S′p(x)]p = 1,

for arbitrary x ∈ R. Most of properties of the functions Sp and S′p are p-similiar to
sine and cosine functions for p = 2 [22].
The following Lemma, is about some properties of Sp.

Lemma 1.1. ([20])

(a)ForS′p 6= 0, (S′p)
′ = −|Sp

S′p
|p−2Sp;

(b)(SpS
′(p−1)
p )′ = |S′p|p − (p− 1)|Sp|p = 1− p|Sp|p = (1− p) + p|S′p|p.

Consider the p-Laplacian eigenvalue problem

− [(u′)(p−1)]′ = (p− 1)(λ2 − q(x)− 2λr(x))u(p−1), 0 < x < 1, (1.2)

with the Dirichlet conditions

u(0) = u(1) = 0, (1.3)

where q ∈ L2(0, 1) and r ∈W 1
2 (0, 1) are real functions.

For p = 2, equation (1.2) becomes

− u′′ + [q + 2λr]u = λ2u, (1.4)
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which is known as diffusion equation in the spectral theory. Equation (1.4) is so cru-
cial in quantum theory. For instance, such problems arise in solving the Klein-Gordon
equations defining the motion of massless particles such as photons. Inverse diffusion
problems have been considered and obtained some new results such as inverse nodal
problem and trace formulas in [12,16,19,29,30].
In [17], the author considered the problem (1.2)-(1.3). It is assumed that r is known
as priori and he has reconstructed the unknown function q by zeros of eigenfunctions
i.e. [17, theorem 3.1]. In this paper, we plan to get derivatives of q. In addition,
we consider the inverse nodal problem for (1.2) with two potential functions q and r
unknown.
This paper is structured as follows: In section 2, we present some preliminary results
and notations that have been studied in [17] which will be useful in the sequel. Fur-
thermore, in this section Theorem 2.6 will be proved. In section 3, we reconstruct the
derivatives of q and also determine the smoothness of the potential function. Finally
in section 4, we prove the uniqueness of recovering the functions q(x), r(x) from a
dense set of nodal points and obtain a constructive procedure for solving the inverse
nodal problem.

2. Preliminaries

In this section, we present some preliminary results and notations that have been
studied in [17,18]. Furthermore, we give a formula for q ∈ L1(0, 1). considering λn be

the nth eigenvalue and 0 < x
(n)
1 < ... < x

(n)
n−1 < 1 as the nodes of the nth eigenfunction

un. The set X := {x(n)
j }n≥1,j=1,n−1 is called the set of nodal points of (1.2)-(1.3) and

lnj = x
(n)
j+1− x

(n)
j is defined as the nodal length of un. Also, let x

(n)
0 = 0 and x

(n)
n = 1.

Furthermore, we take the function jn(x) by jn(x) = max{i : x
(n)
i ≤ x}.

Define a modified Prüfer substitution

u(x) = c(x)Sp(λ
2
p θ(x)),

u′(x) = λ
2
p c(x)S′p(λ

2
p θ(x)),

or

u′(x)

u(x)
= λ

2
p
S′p(λ

2
p θ(x))

Sp(λ
2
p θ(x))

. (2.1)

Differentiating both side of (2.1) for x and by using Lemma 1.1, we can obtain easily

θ′ = 1− q

λ2
Spp −

2

λ
rSpp . (2.2)

Then we may obtain a detailed asymptotic of the eigenvalue λ
2
p [17,18].

Theorem 2.1. ([18,Theorem2.1]) The eigenvalues λn of the Dirichlet problem given
in (1.2), (1.3) have the from

λ
2
p = nπp +

1

p(nπp)p−1

∫ 1

0

q(t)dt+
2

p(nπp)
p−2
p

∫ 1

0

r(t)dt+O(
1

n
p
2

). (2.3)
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as n→∞.

Based on Theorem 2.1 the estimate about the nodal points is given in the following
theorem.

Theorem 2.2. ([18,Theorem2.2]) For problem (1.2), (1.3) the nodal points expansion
satisfies

xnj =
j

n
+

j

pnp+1(πp)p

∫ 1

0

q(t)dt+
2j

pn
p
2 +1(πp)

p
2

∫ 1

0

r(t)dt+
2

(nπp)
p
2

∫ xn
j

0

r(x)Sppdx

+
1

(nπp)p

∫ xn
j

0

q(x)Sppdx+O(
1

n
p
2 +2

) (2.4)

as n→∞.

Moreover, we have the following asymptotic formula for the nodal length.

Theorem 2.3. ([17,Theorem2.3]) For problem (1.2), (1.3) the nodal length expansion
satisfies

lnj =
πp

λ
2
p
n

+
2

pλn

∫ xn
j+1

xn
j

r(t)dt+
1

pλ2
n

∫ xn
j+1

xn
j

q(t)dt+O(
1

λ
1+ 4

p
n

). (2.5)

Theorem 2.4. ([17,Theorem3.1]) Let q ∈ L2(0, 1), r ∈ W 1
2 (0, 1) and assume r that

on the interval [0,1] is given a priori. Then

q(x) = lim
n→∞

pλ2
n(
λ

2
p
n lnj
πp
− 2r(x)

pλn
− 1). (2.6)

Example 2.5. We consider the initial value problem (1.2)-(1.3) for the special case
of q(x) = x and r(x) = 1√

x
i.e.

−[(u′)(p−1)]′ = (p− 1)(λ2 − x− 2λ
1√
x

)u(p−1), 0 < x < 1,

We can obtain that

θ′ = 1− x

λ2
Spp −

2

λ

1√
x
Spp .

Hence, asymptotic estimate of lnj is as following:

lnj =
πp

λ
2
p
n

+
2

pλn

∫ xn
j+1

xn
j

1√
t
dt+

1

pλ2
n

∫ xn
j+1

xn
j

tdt+O(
1

n1+ 4
p

).

Conversely, if we consider r(x) = 1√
x

and use asymptotic formula of lnj as in Example

2.5, we get

lim
n→∞

pλ2
n(
λ

2
p
n lnj
πp
− 2r(x)

pλn
− 1)
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= lim
n→∞

pλ2
n(
λ

2
p
n

πp
[
πp

λ
2
p
n

+
2

pλn

∫ xn
j+1

xn
j

1√
t
dt+

1

pλ2
n

∫ xn
j+1

xn
j

tdt]− 2

pλn
√
x
− 1)

= x = q(x).

Thus, we have reconstructed the potential function q(x) using nodal data.�
Define the function Fn(x) by

Fn(x) := p(nπp)
p(nlnj − 1) +

∫ 1

0

q(t)dt. (2.7)

We show that Fn(x) is in fact a direct approximation of q ∈ L1(0, 1).

Theorem 2.6. Let q ∈ L1(0, 1) and r ∈W 1
2 (0, 1), For the Dirichlet problem (1.2),(1.3).

Then, Fn converges to q pointwisely and in L1(0, 1).

Proof. By the eigenvalue estimates (2.3), we have

pλ2
n(
λ

2
p
n lnj
πp
− 2r(x)

pλn
− 1) = λn(

pλnλ
2
p
n lnj

πp
− 2r(x)− pλn) (2.8)

= (nπ)
p
2 (p(nπ)

p
2 nlnj − 2r(x)− p(nπ)

p
2 ) +O(1).

Hence, applying Theorem 2.4, Fn(x) converges to q pointwisely and in L1(0, 1).�

3. Reconstructing the derivatives of the potential function

The interval [0,1] is divided by the nodal points xnj , j = 1, 2, ..., n − 1, into n
subintervals. Denote Inj = [xnj , x

n
j+1] be the jth nodal domain of the nth eigenvalue.

Suppose q ∈ [0, 1], so both qm,j = min{q(x) : x ∈ Inj } and qM,j = max{q(x) : x ∈ Inj }
exist. Let ∆ denotes the difference operator ∆ai = ai+1 − ai. For k > 1, ∆kai =
∆kai+1 −∆kai, and define δ:

δai =
ai+1 − ai
xi+1 − xi

=
∆ai
li
, δkai =

δk−1ai+1 − δk−1ai
li

.

Consider two equations

−[(u′)(p−1)]′ = (p− 1)(λ2
n − qm,j(x)− 2λnr(x))u(p−1),

−[(u′)(p−1)]′ = (p− 1)(λ2
n − qM,j(x)− 2λnr(x))u(p−1).

So fix x in [0,1], for any n, exists a subinterval Inj such that x ∈ Inj ,

λ2
n − qM,j ≤ λ2

n − q(x) ≤ λ2
n − qm,j .

By sturm comparison theorem, the nodal length of the equation

−[(u′)(p−1)]′ = (p− 1)(λ2 − q(x)− 2λnr(x))u(p−1),

lies between that for the other two equations i.e.
πp

p
√
λ2
n − qm,j

≤ lnj ≤
πp

p
√
λ2
n − qM,j

.
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Hence, we have

πp

p

√
1− qm,j

λ2
n

≤ lnj λ
2
p
n ≤

πp

p

√
1− qM,j

λ2
n

. (3.1)

Proposition 3.1. If q is continuous function, then

(a) limn→∞ lnj λ
2
p
n = πp, lnj = 1

n +O( 1

n
p
2

)

(b)
lnj+k

lnj+m
= 1 +O( 1

n
p
2
−1

) for any fixed k,m ∈ N ;

(c) qm,j ≤ λ2
n −

πp
p

(lnj )p ≤ qM,j.

Lemma 3.2. ([19]) If q ∈ CN [0, 1], then for k = 1, ..., N , ∆klj = O(n−(k+3)) as
n→∞ and the order estimate is independent of j.

Lemma 3.3. ([19]) Let Φj = Σmi=1φj,i with each φj,i =
∏ki
p=1 ϕj,i,p, where each

ϕj,i,p ∈ U
(n)
j . Suppose Φj = O(n−ν) and q is sufficiently smooth. Then δkΦj =

O(n−ν) for all k ∈ N .

Lemma 3.4. ([19]) Suppose f ∈ CN [0, 1] and Φj =
∫ xn

j+1

xn
j

f(x)dx. Then δkΦj =

O(n−1) for any k = 0, 1, ..., N .

Theorem 3.5. ([19])Let Φm(xnj ) = ψ1(xnj )ψ2(xnj )...ψm(xnj ), where ψj(x
n
j ) = xnj+ki

and ki ∈ N ∪ 0. If q is Ck on [0, 1], then

δkΦ(xnj ) ==

 O(1), 0 ≤ k ≤ m− 1,
m! +O(n−1), k = m,
O(n−2), k ≥ m+ 1.

Theorem 3.6. ([19]) If q ∈ CN+1[0, 1], then

q(k)(x) = δkq(xnj )− 2λnr(x) +O(
1

n
)

for k = 0, 1, ..., N , where j = jn(x). The order estimate is uniformly valid for compact
subsets of [0, 1].

Theorem 3.7. Suppose that q in (1.2) is CN+1 on [0,1] (N ≥ 1), and let j = jn(x)
for each x ∈ [0, 1]. Then, as n→∞,

q(x) = pλ2
n(
λ

2
p
n lnj
πp
− 2r(x)

pλn
− 1) +O(

1

n
2
p

), (3.2)

and, for all k = 1, 2, ..., N ,

q(k)(x) =
pλ2

nλ
2
p
n

πp
δklnj − 2λnδ

kr(xnj )− 2λnr(x) +O(1). (3.3)

Proof. It is clear that q is uniform. Assume that q is differentiable on [0,1]. By

intermediate value theorem on (3.1). There is some ξ
(n)
j ∈ (xnj , x

n
j+1) such that

λ
2
p
n lnj
πp

= (1−
q(ξ

(n)
j )

λ2
n

)−
1
p = 1 +

q(ξ
(n)
j )

pλ2
n

+O(
1

λ4
n

).
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Hence

pλ2
n(
λ

2
p
n lnj
πp
− 1)− q(ξ(n)

j ) = O(
1

np
),

pλ2
n(
λ

2
p
n lnj
πp
− 2r(x)

pλn
− 1) + 2λnr(x)− q(ξ(n)

j ) = O(
1

np
).

By the mean value theorem, when n is sufficiently large,

q(x) = q(ξ
(n)
j )− 2λnr(x) +O(

1

n
p
2

).

By using the estimate of nodal lengths, we obtain

lnj =
πp

λ
2
p
n

+
2

pλn
r(xnj )lnj +

1

pλ2
n

q(xnj )lnj +O(
1

n1+ 4
p

).

Hence,

q(xnj ) = pλ2
n(
λ

2
p
n lnj
πp
−

2r(xnj )

pλn
− 1) +O(1).

Therefore

δq(xnj ) =
pλ2

nλ
2
p
n

πp
δlnj − 2λnδr(x

n
j ) +O(1),

and so, for k = 1, 2, ..., N,

δkq(xnj ) =
pλ2

nλ
2
p
n

πp
δklnj − 2λnδ

kr(xnj ) +O(1).

If we use the result of Theorem 3.6, we get

q(k)(x) =
pλ2

nλ
2
p
n

πp
δklnj − 2λnδ

kr(xnj )− 2λnr(x) +O(1).�

Now, we can prove the smoothness of the q with nodes. Let

F (k)
n =

pλ2
nλ

2
p
n

πp
δklnj − 2λnδ

kr(xnj ).

Our theorem on the smoothness of q is as follows.

Theorem 3.8. Assume that q is continuous on [0,1]. If F
(k)
n is uniformly convergent

on [0,1], for each k = 1, ..., N, then q is CN , and F
(k)
n converge to q(k) uniformly on

[0,1].

Proof. The proof is similar to Theorem 1.2 in [21]. Take x ∈ (0, 1). Also, let

G(1)(x) = limn→∞ F
(1)
n (x). Hence∫ x

0

G(1)(t)dt = lim
n→∞

∫ xn
j

0

G(1)(t)dt
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= lim
n→∞

∫ xn
j

0

F (1)
n (t)dt

= lim
n→∞

∫ xn
j

0

[
pλ2

nλ
2
p
n

πp
δlnj − 2λnδr(x

n
j )]dt

= lim
n→∞

pλ2
nλ

2
p
n

πp

j−1∑
i=0

(lni+1 − lni )

lni
lni − lim

n→∞
2λn

j−1∑
i=0

(r(xni+1)− r(xni ))

lni
lni

= lim
n→∞

pλ2
nλ

2
p
n

πp
(lnj − ln0 )− lim

n→∞
2λn(r(xnj )− r(0))

= [ lim
n→∞

pλ2
nλ

2
p
n

πp
lnj − 2λnr(x

n
j )− pλ2

n]− [ lim
n→∞

pλ2
nλ

2
p
n

πp
ln0 − 2λnr(0)− pλ2

n]

= q(x)− q(0).

Since G(1) is continuous, we finalized q′(x) = G(1)(x) then q ∈ C1.
If for any nonnegative integer N ,

q(N)(x) = lim
n→∞

F (N)
n (x).

for any x ∈ (0, 1) and F
(N+1)
n is uniformly convergent on [0,1], let G(N+1)(x) =

limn→∞ F
(N+1)
n . Hence,∫ x

0

G(N+1)(t)dt = lim
n→∞

∫ xn
j

0

G(N+1)(t)dt

= lim
n→∞

∫ xn
j

0

F (N+1)
n (t)dt

= lim
n→∞

∫ xn
j

0

[
pλ2

nλ
2
p
n

πp
δN+1lnj − 2λnδ

N+1r(xnj )]dt

= lim
n→∞

pλ2
nλ

2
p
n

πp

j−1∑
i=0

(δN lni+1 − δN lni )

lni
lni − lim

n→∞
2λn

j−1∑
i=0

(δNr(xni+1)− δNr(xni ))

lni
lni

= lim
n→∞

pλ2
nλ

2
p
n

πp
(δN lnj − δN ln0 )− lim

n→∞
2λn(δNr(xnj )− δNr(0))

= lim
n→∞

(FNn (x)− FNn (0))

= q(N)(x)− q(N)(0).

Therefore, q(N+1)(x) = G(N+1)(x) and q is CN+1.�
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4. Reconstructing of the potential functions

In this section we investigate the inverse nodal problem for (1.2) provided q(x) and
r(x) are unknown from a dense subset of nodal points. The uniqueness theorem is
given and a constructive algorithm for the solution is provided.

Corollary 4.1. From (2.4) it follows that the set X of nodal points is dense in [0,1].

Problem 4.2. Given the set X of nodal points, find the functions q(x) and r(x).

The following assertion is an immediate corollary of Theorem 2.2.

Lemma 4.3. Fix x ∈ [0, 1]. Chosen jn such that limn→∞ xnjn = x. Then the following
finite limits exist and the corresponding equalities hold:

R(x) = lim
n→∞

p(πp)
p
2 n

p
2−1

2
(nxnjn − jn) (4.1)

Q(x) = lim
n→∞

(nπp)
p
2 [
p(nπp)

p
2

2n
(nxjn − jn)−R(xnjn)] (4.2)

and

R(x) =

∫ x

0

r(t)dt (4.3)

Q(x) =

∫ x

0

q(t)dt. (4.4)

Now, we are ready for a uniqueness theorem and solution of inverse nodal problem.

Theorem 4.4. Let X0 ⊂ X be a dense subset. Then, the specification of X0 uniquely
determines the functions q(x) and r(x). The functions q(x) and r(x) can be con-
structed via the following algorithm:

(i) For each x ∈ [0, 1] choose a sequence {xnjn} ⊂ X0 such that xnjn → x as n→∞.
(ii) Find the function R(x) via (4.3) and calculate r(x) = R′(x).
(iii) Find the function Q(x) via (4.4) and calculate q(x) = Q′(x).

We denote the boundary value problem (1.2) and (1.3) by L = L(q(x), r(x)).

Together with L we consider a boundary value problem L̃ = L(q̃(x), r̃(x)). We agree
that if a certain symbol α denotes an object related to L, then the same symbol with

the tilde α̃ denotes the analogous object related to L̃.

From Theorem 9 we notice that if X = X̃, then q(x) = q̃(x) and r(x) = r̃(x).

Lemma 4.5. ([20]) Suppose that f ∈ L1[0, 1]. Then for almost every x ∈ [0, 1] with
j = jn(x),

lim
n→∞

λ
2
p
n

πp

∫ xn
j+1

xn
j

f(t)dt = f(x). (4.5)

Alternatively, we can obtain the formulae using the nodal length, which allows one
to approximate r(x). Asymptotic formulae for q(x) has already obtained in [16].
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Theorem 4.6. The function r(x) is given by

r(x) = lim
n→∞

1

2
pλn(

λ
2
p
n lnj
πp
− 1) (4.6)

for a.e. x ∈ (0, 1) with j = jn(x).

Proof. According to (2.5) we have

lnj =
πp

λ
2
p
n

+
2

pλn

∫ xn
j+1

xn
j

r(t)dt+O(
1

λ2
n

).

Hence,

pλn(
λ

2
p
n lnj
πp
− 1) =

2λ
2
p
n

πp

∫ xn
j+1

xn
j

r(t)dt+O(
1

λ
1− 2

p
n

).

By Lemma 4.5, (4.6) is proved.�
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