تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,469 |
تعداد دریافت فایل اصل مقاله | 15,217,033 |
مدلسازی و شبیه سازی حرکت نانو ذرات استوانهای با استفاده از شکلهای مختلف کانتیلور میکروسکوپ نیروی اتمی در محیط حقیقت مجازی | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 20، دوره 47، شماره 3، آذر 1396، صفحه 179-186 اصل مقاله (1.75 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
مائده غفزانی* 1؛ محرم حبیب نژاد کورایم2؛ علی کفاش هوشیار3 | ||
1دانشجوی کارشناسی، گروه مهندسی مکانیک، دانشگاه علوم و تحقیقات تهران، ایران | ||
2استاد، گروه مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران، ایران | ||
3استادیار، دانشگاه آزاد اسلامی واحد قزوین، قزوین، ایران | ||
چکیده | ||
با گسترش نانو فناوری، روباتهای بر پایه میکروسکوپ نیروی اتمی بعنوان ابزاری کارآمد جهت انتقال و ساخت نانو ساختارها بصورت گسترده مورد توجه قرار گرفته است. عدم امکان مشاهده همزمان عملیات هل دادن کنترل شده نانو ذرات یکی از مهمترین محدودیت های این روش می باشد. بمنظور رفع این محدودیت در این مقاله از یک محیط حقیقت مجازی جهت مشاهده روند عملیات استفاده شده است. در شبیه سازی صورت گرفته در این پژوهش ابتدا تصاویر گرفته شده از میکروسکوپ نیروی اتمی پردازش شده و موقعیت و ابعاد نانو ذرات مشخص شده است. پس از آن با استفاده از مدلسازی دینامیک انتقال نانو ذرات و شبیه سازی نمودار نیرو زمان بحرانی، امکان انتقال کنترل شده ذرات فرآهم آمده است. شبیه سازیها جهت استفاده از کانتیلور های مستطیلی، Dagger و V-Shape گسترش یافته است. محیط واقعیت مجازی ارائه شده امکان شبیه سازی دقیق فرآید کاربردی نمودن مدلسازیهای ارائه شده جهت کاربران را فرآهم آوده است. | ||
کلیدواژهها | ||
نانوربات AFM؛ محیط حقیقت مجازی؛ نانو ذرات استوانه ای | ||
مراجع | ||
[1] Onal C. D., Sitti M., Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope, Nanotechnology, IEEE Transactions on, Vol. 9, No. 1, pp.46-54, 2010. [2] Sitti M., Tafazzoli A., Dynamic Modes of Nanoparticle Motion during Nanoprobe-Based Manipulation, Nanotechnology, 4th IEEE Conference on, IEEE, pp. 35–37, 2004. [3] Onal C. D., Ozcan O., Sitti M., Automated 2-D nanoparticle manipulation with an atomic force microscope, Robotics and Automation, ICRA'09. IEEE International Conference on, IEEE, pp. 485–489, 2009. [4] Onal C. D., Ozcan O., Sitti M., Automated 2-D nanoparticle manipulation using atomic force microscopy, Nanotechnology, IEEE Transactions on, Vol. 10, No. 3, pp. 472-481, 2011. [5] Korayem M. H., Mahmoodi Z., Taheri M., Saraee M. B., Three-dimensional modeling and simulation of the AFM-based manipulation of spherical biological micro/nanoparticles with the consideration of contact mechanics theories, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics: 1464419314567551, 2015. [6] Hou J., Wu C., Liu L., Wang Z., Modeling and analyzing nano-rod pushing with an AFM, Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on, IEEE, pp. 329–334, 2010. [7] Korayem M. H., Hoshiar A., Dynamic 3D modeling and simulation of nanoparticles manipulation using an AFM nanorobot, Robotica, Vol. 32, No. 04, pp. 625-641, 2014. [8] Korayem M. H., Hoshiar A., Modelling and simulation of dynamic modes in manipulation of nanorods, Micro & Nano Letters, IET, Vol. 8, No. 6, pp. 284-287, 2013. [9] Gates R. S., Reitsma M., Kramar J. A., PrattJ. R., Atomic force microscope cantilever flexural stiffness calibration: Toward a standard traceable method, Journal of Research of the National Institute of Standards and Technology, Vol. 116, No. 4, pp. 703-727, 2011. [10] Sader J. E., Sanelli J. A., Adamson B. D., Monty J. P., Wei X., Crawford S. A., Friend J. R., Marusic I., Mulvaney P., Bieske E. J., Spring constant calibration of atomic force microscope cantilevers of arbitrary shape, Review of Scientific Instruments, Vol. 83, No. 10, 103705, 2012. [11] Daeinabi K., Korayem M. H., AYarijani S., Force transducer modeling of rectangular, V-shaped, and dagger cantilever probes based on atomic force microsopy, Instrumentation Science & Technology, Vol. 40, No. 4, pp. 338-354, 2012. [12] Korayem M. H., Motaghi A., Zakeri M., Dynamic modeling of submerged nanoparticle pushing based on atomic force microscopy in liquid medium, Journal of Nanoparticle Research, Vol. 13, No.10, pp. 5009-5019, 2011. [13] Korayem M. H., Hoshiar A., Kordi F., Dynamic modeling and simulation of cylindrical nanoparticles in liquid medium, The International Journal of Advanced Manufacturing Technology, Vol. 75, No. 1, pp. 197-208, 2014. [14] Li G., Xi N., Chen H., Pomeroy C., Prokos M., “Videolized Atomic Force Microscopy for Interactive Nanomanipulation and Nanoassembly”, IEEE Transactions on nanotechnology, Vol. 4, No. 5, pp. 605-615, 2005. [15] Varol A., Gunev I., Basdogan C., A virtual reality toolkit for path planning and manipulation at nano-scale, Haptic Interfaces for Virtual Environment and Teleoperator Systems, 14th Symposium on, IEEE, pp.485-489, 2006. [16] Vogl W., Bernice K. L., Augmented reality user interface for an atomic force microscope-based nanorobotic system, Nanotechnology, IEEE Transactions on, Vol. 5, No.4, pp. 397-406, 2006. [17] Naebi A., Korayem M. H., Hoseinpour F., Ramadass S., Simulation of routing in nano-manipulation for creating pattern with atomic force microscopy using hybrid GA and PSO-AS algorithms, Advances in Swarm Intelligence, Springer, Vol. 6728, pp. 606-615, 2011. [18] Korayem M. H., Esmaeilzadehha S., Virtual reality interface for nano-manipulation based on enhanced images, The International Journal of Advanced Manufacturing Technology, Vol. 63, No. 9, pp. 1153-1166, 2012. [19] Korayem A. H., Hoshiar A. K., Ashtiani N. N., Korayem M. H., Using a Virtual Reality Environment to Simulate the Pushing of Cylindrical Nanoparticles, International journal of nanoscience and nanotechnology , Vol. 10 ( 3), pp. 133-144, 2014. [20] Verma O. P., Hanmandlu M., Kumar P., Srivastava S., A novel approach for edge detection using ant colony optimisation and fuzzy derivative technique, Computer and Information Science (ICIS), IEEE/ACIS 9th International Conference on, IEEE, pp. 228-233, 2010. [21] Rajeswari R., Rajesh R., A modified ant colony optimization based approach for image edge detection, Image Information Processing (ICIIP), International Conference on, IEEE, pp. 1-6, 2011. [22] Saini M.K., Sindhu D., Directional approach and modified self-adaptive ant colony optimization for edge detection, Signal Processing and Communication (ICSC), International Conference on, IEEE, pp. 252-255, 2013. [23] Dorigo M., Blum C., Ant colony optimization theory: A survey, Theoretical computer science, Vol. 344, No. 2, pp. 243-278, 2005. [24] Tian J., Yu W., Xie S., An ant colony optimization algorithm for image edge detection. Evolutionary Computation, 2008, Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on , IEEE, pp. 751-756, 2008. [25] Rezaee A., Extracting edge of images with ant colony, Journal of Electrical Engineering, Vol. 59, No. 1, pp. 57-59, 2008. [26] Yang H., Zhang J., Mathematical Morphology in Edge Detection Application, Journal of Liaoning University (Natural Science Edition), Vol. 32, No. 1, pp. 50-53, 2005. | ||
آمار تعداد مشاهده مقاله: 550 تعداد دریافت فایل اصل مقاله: 425 |