تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,487,220 |
تعداد دریافت فایل اصل مقاله | 15,214,078 |
بررسی انتقال گرما در کانال با مانع مربعی در محیط متخلخل: روش شبکه بولتزمن | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 30، دوره 47، شماره 2 - شماره پیاپی 79، مرداد 1396، صفحه 275-282 اصل مقاله (1.19 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
ریحانه مسرور1؛ پوریا امیدوار* 2 | ||
1دانشجوی کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران | ||
2استادیار، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران | ||
چکیده | ||
هدف از این پژوهش بررسی اثرات محیط متخلخل بر ترمودینامیک جریان در کانال با مانع مربعی کاملاً متخلخل به کمک روش شبکه بولتزمن میباشد. به منظور شبیهسازی انتقال حرارت در محیط متخلخل، از مدل عمومی برینکمن– فورچیمر در مقیاس REV همراه با تابع توزیع دوگانه استفاده میگردد. در ابتدا به منظور اعتبارسنجی شبیهسازی انتقال حرارت در محیط متخلخل، انتقال حرارت در کانال ساده و کانال با مانع مربعی شبیهسازی میشود و نتایج حاصل از توزیع ناسلت بر روی اضلاع مختلف مانع با پژوهش پیشین مقایسه میگردد. در ادامه برای اعتبار سنجی روش مورد استفاده در شبیهسازی محیط متخلخل، انتقال حرارت درون کانال کاملاً متخلخل شبیهسازی شده و نتایج بدست آمده با نتایج حاصل از پژوهشهای پیشین ارزیابی میگردد. در نهایت جریان و انتقال حرارت درون کانال با مانع مربعی کاملاً متخلخل شبیهسازی شده و اثرات پارامترهای محیط متخلخل مانند نفوذپذیری و همچنین اثر عدد رینولدز بر انتقال حرارت جریان بررسی میگردد. نتایج نشان میدهند که با افزایش نفوذپذیری و همچنین عدد رینولدز، انتقال حرارت افزایش مییابد. | ||
کلیدواژهها | ||
روش شبکه بولتزمن؛ نفوذ پذیری؛ تخلخل؛ مدل عمومی برینکمن – فورچیمر | ||
مراجع | ||
[1] Mohamad A. A., Heat transfer enhancements in heat exchangers fitted with porous media. Part I: constant wall temperature, Int. J. Thermal Science, vol. 42, no. 4, pp. 385-395, 2003. [2] Al-Nimr M. A., Alkam M. K., Unsteady non-Darcian forced convection analysis in an annulus partially filled with a porous material, ASME J. Heat Transfer, Vol. 119, No. 4, pp. 799-804, 1997. [3] Layeghi M., Nouri-Borujerdi A., Fluid flow and heat transfer around circular cylinder in the presence and no-presence of porous media, J. Porous Media, Vol. 7, No. 3, pp. 239-247, 2004. [4] Shuja S. Z., Yilbas B. S., Kassas M., Flow over porous blocks in a square cavity: Influence of heat flux and Porosity on heat transfer rates, Int. J. Thermal Science, Vol. 44, No. 1, pp. 33-42, 2009. [5] Ashorynejad H.A., Farhadi M., Sedighi K., and Hasanpour A., Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method, World Academy of Science, Engineering & Technology, Vol. 5, pp. 01-26, 2011. [6] Abouei Mehrizi A., Sedighi K., Hassanzade Afrouzi H., and Latif Aghili A., Lattice Boltzmann Simulation of Forced Convection in Vented Cavity Filled by Porous Medium with Obstruction, World Applied Sciences Journal رol. 16, pp. 31-36, 2012. [7]Nor Azwadi C. S., Syahrullail S., Numerical solution to thermal fluid flow through Porous media using Lattice Boltzmann method, Int. Rev. Mechanical Engineering, Vol. 7, No. 6, pp. 1218-1222, 2013. [8] Zarghami A., Francesco S. D., Bisscarini C., Porous substrate effect on thermal flows through a REV- scale volume Lattice Boltzmann model, Int. J. Modern Physics C, Vol. 25, No. 2, 2014. [9] Buick, J. M., Greated, C. A., Gravity in a Lattice Boltzmann model,Int. J. Physic of Review E, Vol. 61, pp 5307-5320, 1999. [10] Ubertini S., Succi S., Recent advances of Lattice Boltzmann techniques on unstructured grids, Progress in Computational Fluid Dynamics, Vol. 5, No.1/2, pp. 85-96, 2005. [11] Ubertini S., Succi S., A generalized Lattice Boltzmann equation on unstructured grids, J. Communication in Computational Physics, vol. 3, no. 2, pp. 342-356, 2008. [12] Succi S., Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer, The Canadian Journal of Chemical Engineering, Vol. 85, No. 6, pp. 946-947, 2007. [13] Ergun, S., Fluid flow through Packed Columns, J. Chemical Engineering Progress, Vol. 48, No. 2, pp. 89-94, 1952. [14] Shu C., Peng Y., Chew Y. T., Simulation of Natural Convection in a square cavity by Teylor series expansion- and least square- based Lattice Boltzmann method, Int. J. Modern Physics, Vol. 13, No. 10, pp. 1399-1414, 2002. [15] Guo Z., Zheng C., Shi B., An Extrapolation Method for Boundary Conditions in Lattice Boltzmann Methods, J. Physic of Fluids,Vol. 14, No. 6, pp. 2007-2010, 2002. [16] Tang G. H., Tao W. Q., He Y. L., Thermal Boundary Condition For The Thermal Lattice Boltzmann Equation,Int. J. Physic of Review E, Vol. 72, No. 016703, pp 1-6, 2005. [17] Shah R. K., London A. L., Advances in Heat Transfer,Academic Press, New York, 1978. [18] Rahnama M., Hashemian, S. M., Farhadi M., "Forced Convection Heat Transfer From a Rectangular Cylinder: Effect of aspect ratio, 16th International Symposium on Transport Phenomena, Prague, 2005. [19] Alkam M. K., Hamdan M. O., Al-Nimr M. A., Enhancing forced convection by inserting porous substrate in the core of a parallel-plate channel, Int. J. Numerical Methods Heat Fluid Flow, Vol. 10, No. 5, pp. 502-517, 2000. [20] Dinakaran S., Ponmozhi J., Heat transfer from a permeable square cylinder to a flowing fluid, Int. J. Energy Conversion and Management (Elsevier), Vol. 52, No. 5, pp. 2170-2182, 2011. | ||
آمار تعداد مشاهده مقاله: 460 تعداد دریافت فایل اصل مقاله: 639 |