تعداد نشریات | 44 |
تعداد شمارهها | 1,298 |
تعداد مقالات | 15,883 |
تعداد مشاهده مقاله | 52,116,584 |
تعداد دریافت فایل اصل مقاله | 14,887,932 |
تحلیل ارتعاشی نانولولههای کربنی حامل سیال با پروفیل جریان لایهای و آشفته | ||
مهندسی مکانیک دانشگاه تبریز | ||
مقاله 6، دوره 47، شماره 2 - شماره پیاپی 79، مرداد 1396، صفحه 47-58 اصل مقاله (1.55 M) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
محمد حسینی* 1؛ ملیحه افتخاری2؛ مسلم صادقی گوغری3 | ||
1دانشیار، گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران | ||
2دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه یزد، یزد، ایران | ||
3کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران | ||
چکیده | ||
در این مقاله، ارتعاشات آزاد و ناپایداری نانولولههای کربنی تک جداره حامل سیال با در نظر گرفتن اثرات غیریکنواختی پروفیل سرعت برای رژیم جریان آرام و مغشوش براساس تئوری الاستیسیته غیرمحلی بررسی شده است. غیریکنواختی پروفیل سرعت بدلیل وجود اثرات لزجت سیال میباشد. معادلات حاکم به همراه شرایط مرزی براساس تئوری تیر اویلر-برنولی و با استفاده از اصل هامیلتون استخراج شده است. جمله مربوط به نیروهای گریز از مرکز در معادلات حرکت بدلیل پروفیل غیریکنواخت برای رژیم جریان لایهای و رژیم جریان مغشوش اصلاح شده است. روش تبدیل دیفرانسیلی (DTM) برای حل معادلات دیفرانسیل حاکم بر مسئله استفاده شده است. در تحلیل ارتعاشی اثرات پارامتر غیرمحلی و پروفیل سرعت غیریکنواخت بر روی خواص ارتعاشی نانولولههای کربنی حامل جریان سیال برای شرایط مرزی مختلف بررسی شده است. نتایج نشان میدهد که اثرات الاستیسیته غیرمحلی موجب افزایش فرکانس طبیعی و سرعت بحرانی سیستم میشود، در حالی که پروفیل سرعت غیریکنواخت موجب کاهش سرعت بحرانی و فرکانس طبیعی نانولوله در مقایسه با مورد مشابه با جریان یکنواخت میشود. اعتبار سنجی نتایج با مقایسه نتایجی که در تحقیقات پیشین بدست آمده است تایید گردیده است. | ||
کلیدواژهها | ||
نانولوله کربنی؛ الاستیسیته غیرمحلی؛ جریان لایهای؛ جریان مغشوش؛ روش تبدیل دیفرانسیلی | ||
مراجع | ||
[1] Iijima S., Helical microtubules of graphitic carbon, Nature, Vol. 354, pp. 56-58, 1991. [2] Ebbesen T. W.,(). Carbon Nanotubes: Preparation and Properties, New York: CRC Press, 1997. [3] Fang S.C., Chang W.J., Wang Y.H., Computation of chirality- and size-dependent surface young’s moduli for single-walled carbon nanotubes, Physics Letter A., Vol. 371, pp. 499-503, 2007. [4] Dirote E.V., Trends in Nanotechnology Research,New York: Nova Science Publishers, 2004. [5] Asadi E., Farhadi Nia M., Vibrational study of laminated composite plates reinforced by carbon nanotubes, Modares Mechanical Engineering, Vol. 14, No. 3, pp. 7-16, 2014. [6] Zakeri M., Shayanmehr M., Shokrieh M.M., Interface modeling of nanotube reinforced nanocomposites by using multi-scale modeling method, Modares Mechanical Engineering, Vol. 12, No. 5, pp. 1-11, 2012. [7] Wang L., Ni Q., Li M., Buckling instability of double-wall carbon nanotubes conveying fluid, Computational Materials Science, Vol. 44, pp. 821-825, 2008. [8] Sawano S., Arie T., Akita S., Carbon nanotube resonator in liquid, Nano Letters, Vol. 10, pp. 3395-3398, 2010. [9] Rafiee, R., Analysis of nonlinear vibrations of a carbon nanotube using perturbation technique,Modares Mechanical Engineering, Vol. 12, No. 3, pp. 60-67, 2012. [10] Foldvari M., Bagonluri M., Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 4, pp. 183-200, 2009. [11] Khosravian N., Rafii-Tabar H., Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam, Nanotechnology, Vol. 19, pp. 275703, 2008. [12] Yoon J., Ru C.Q., Mioduchowski A., Vibration and instability of carbon nanotubes conveying fluid,Composites Science and Technology, Vol. 65, pp. 1326-1336, 2005. [13] Wang L., Ni Q., A reappraisal of the computational modeling of carbon nanotubes conveying viscous fluid, Mechanics Research Communications, Vol. 36, pp. 833–837, 2009. [14] Zhen, Y.X., Fang B., Tang Y., Thermal–Mechanical vibration and instability analysis of fluid-conveying double walled carbon nanotubes embedded in visco-elastic medium, Physica E, Vol. 4, pp. 379-385, 2011. [15] Ansari R., Arash B., Nonlocal Flügge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions, Journal of Applied Mechanics , Vol. 80, pp. 021006 (12 page), 2013 [16] Wang L., Vibration and instability analysis of tubular nano-and micro-beams conveying fluid using nonlocal elastic theory, Physica E, Vol. 41, pp. 1835-1840, 2009. [17] Lee H., Chang W., Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, Journal of Applied Physics , Vol. 103, pp. 024302, 2008. [18] Tounsi A., Heireche H., Bedia E.A.A., Comment on Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory, Journal of Applied Physics, Vol. 105, pp. 126105, 2009. [19] Lim C.W., On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection, Applied Mathematics and Mechanics, Vol. 31, pp. 37-54, 2010. [20] Wang L., A modified nonlocal beam model for vibration and stability of nanotubes conveying fluid, Physica E, Vol. 44, pp. 25–28, 2011. [21] Murmu T., Adhikari S., Nonlocal vibration of carbon nanotubes with attached buckyballs at tip, Mechanics Research Communications, Vol. 38, pp. 62–67, 2011. [22] Murmu T., Adhikari S., Nonlocal frequency analysis of nanoscale biosensors, Sensors and Actuators A: Physical 1, Vol. 73, pp. 41–48, 2012. [23] Li C. Y., Chou T. W., Vibrational behaviors of multi-walled carbon nanotube-based nanomechancial resonators, Applied Physics Letters, Vol. 84, pp. 121–123, 2004. [24] Lam D. C. C., Yang F., Chong A. C. M., Wang J., Tong P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 1477–1508, 2003. [25] Park S. K., Gao X. L., Bernoulli-Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2355–2359, 2006. [26] Park S. K., Gao X. L., Variational formulation of a modified couple stress theory and its application to a simple shear problem, Zeitschrift für angewandte Mathematik und Physik, Vol. 59, pp. 904–917, 2008. [27] Genxuan Z., Minghou L., Xianfeng Z., Taohong Y., Yiliang C., Lu W., Continuum-Based slip model and its validity for micro-channel flows, Chinese Science Bulletin, Vol. 51, pp. 1130–1137, 2006. [28] Hosseini M., Sadeghi-Goughari M., Atashipour S. A. and Eftekhari M., Vibration analysis of single-walled carbon nanotubes conveying nanoflow embedded in a viscoelastic medium using modified nonlocal beam model, Archives of Mechanics, Vol. 66, pp. 217-244, 2014. [29] Eringen A.C., On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, Vol. 54, pp. 4703–4710, 1983. [30] Lim C.W., Wang C.M., Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams, Journal of Applied Physics, Vol. 101, pp. 054312, 2007. [31] Païdoussis M.P., Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 1, London: Academic Press, 1998. [32] Guo C.Q., Zhang C.H., Païdoussis M.P., Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles, Journal of Fluids and Structures, Vol. 26, pp. 793-803, 2010. [33] Zhou J.K., Differential Transformation and Its Applications for Electrical Circuits, China: Huazhong University Press, 1986. [34] Ni Q., Zhang Z.L., Wang L., Application of the differential transformation method to vibration analysis of pipes conveying fluid, Applied Mathematics and Computation, Vol. 217, pp. 7028–7038, 2011. [35] Soltani P., Taherian M.M., Farshidianfar A., Vibration and instability of a viscous-fluid-conveying single-walled carbon nanotube embedded in a visco-elastic medium, Journal of Physics D Applied Physics, Vol. 43, pp. 425401, 2010. [36] Chen C.K., Ho S.H., Application of differential transformation to eigenvalue problems, Applied Mathematics and Computation, Vol. 79, pp. 173–188, 1996. [37] Thomson W.T., Theory of Vibration with Applications, London: Unwin Hyman Ltd, 1988. | ||
آمار تعداد مشاهده مقاله: 449 تعداد دریافت فایل اصل مقاله: 731 |