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Abstract In this present study, the double layers structure model of extended Korteweg-de
Vries (KdV) equation will be obtained with the help of the reductive perturbation
method, which admits a double layer structure in current plasma model. Then by
using of new analytical method we obtain the new exact solitary wave solutions of

this equation. Double layer is a structure in plasma and consists of two parallel layers
with opposite electrical charge. The sheets of charge cause a strong electric field and
a correspondingly sharp change in electrical potential across the double layer. As a
result, they are expected to be an important process in many different types of space

plasmas on earth and on many astrophysical objects. These nonlinear structures can
occur naturally in a variety of space plasmas environment. They are described by
the Korteweg-de Vries (KdV) equation with additional term of cubic nonlinearity in

different homogeneous plasma systems. The performance of this method is reliable,
simple and gives many new exact solutions. The (G’/G)-expansion method has more
advantages: It is direct and concise.
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1. Introduction

A solitary wave is a wave which propagates without any temporal evolution in shape
or size when viewed in the reference frame moving with the group velocity of the
wave. The envelope of the wave has one global peak and decays far away from the
peak. Solitary waves arise in many contexts, including the elevation of the surface of
water and the intensity of light in optical fibers. A soliton is a nonlinear solitary wave
with the additional property that the wave retains its permanent structure, even after
interacting with another soliton. For example, two solitons propagating in opposite
directions effectively pass through each other without breaking. Solitons form a spe-
cial class of solutions of model equations, including the Korteweg de-Vries (KdV) and
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the Nonlinear Schrodinger (NLS) equations. These model equations are approxima-
tions, which hold under a restrictive set of conditions. The soliton solutions obtained
from the model equations provide important insight into the dynamics of solitary
waves. Exact solutions of NPDEs play an important role in the proper understanding
of qualitative features of many phenomena and processes in the mentioned areas of
natural science.
These equations are mathematical models of complex physical phenomena that arise in
engineering, applied mathematics, chemistry, biology, mechanics, physics, etc. Thus,
it is very important to reveal exact solutions of nonlinear partial differential equations.
Two-temperature plasmas are one of very interesting subjects in plasma physic be-
cause they can open new research area for scientists. The theoretical and experimental
results have shown that the characteristics of solitary waves strongly modified by the
presence of minority population of cold electrons [2, 9, 13], Many authors [1, 3, 4,
14] have investigated the propagation of linear and nonlinear waves and their stabil-
ity properties in Maxwellian plasmas. However, observations show that astrophysical
and space plasmas have particle distribution function that are quasi-Maxwellian up
to the mean thermal velocities, and possess non-Maxwellian superthermal tails at the
high velocities or energies. Such superthermal plasmas may be found naturally in the
magnetosphere of earth, Saturn, Mercury, Uranus, and in the solar wind [12] and can
be modeled by the socalled Lorentzian (or kappa) distribution [10]. The Lorentzian
distribution function in three-dimensional is given as [6, 8, 10, 11]

fk (ν) =
n0

(πκθ2)
3
2

Γ (κ+ 1)

Γ (κ− 1/2)

(
1 +

ν2

κθ2

)−(κ+1)

, (1.1)

where n0 is the species equilibrium number density, θ = [1− 3/ (2κBT/m)]
1
2 is the

characteristic velocity, T is the kinetic temperature and m is the species mass. Here
z obviously denotes the square velocity norm of the velocity ν, Γ (x) is the usual
gamma function and κ is the spectral index that measuring deviation from Maxwellian
equilibrium. We shall note that the effective thermal speed θ is only defined for
κ > 3/2, and thus, when considering physical quantities derived from Eq. (1.1), such
as the density, we shall use κ > 3/2. For large values of κ(in limit κ → ∞) kappa
distributions reduces to Maxwellian distribution.
The objective of this article is the constructing exact solitary wave solutions for double
layers structure model of extended Korteweg-de Vries (KdV) equation by using of the
new extension of the (G’/G)-expansion method [8]. We assume the solution of NLEEs

is of the form u (ξ) =
n∑

i=0

αi (m+ F (ξ))
i
+

n∑
i=1

βi (m+ F (ξ))
−i

where F (ξ) = G′/G,

and G = G (ξ) satisfies the ordinary differential equation G′′ (ξ)+λG′ (ξ)+µG (ξ) = 0,
where k and l are arbitrary constants. From our observation we found that if we

set m = 0 and leave out the portion
n∑

i=1

βi (m+ F (ξ))
−i

in our solution, then our

solutions coincides with the solutions introduced by Wang et al. [16] and improved
by other researchers [5, 7, 15, 16].
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On comparing between the (G’/G)-expansion method and the other methods such as
the modified tanhcoth method, we conclude that the (G’/G)- expansion method is
more powerful, effective and convenient. The performance of this method is reliable,
simple and gives many new exact solutions. The (G’/G)-expansion method has more
advantages: It is direct and concise. It is also a standard and computerizable method
which allows us to solve complicated nonlinear evolution equations in mathematical
physics. We have noted that the (G’/G)-expansion method changes the given difficult
problems into simple problems which can be solved easily.
The remainder of this paper is organized as follows. In Section 2, basic equations for
derivation the extended KdV equation in current plasma model is discussed. In Sec-
tion 3, basic structure of analytical method and application to the extended Korteweg-
de Vries (KdV) equation is expressed. Finally, some conclusions are given in Section
4.

2. Basic equations for derivation the extended KdV equation in
current plasma model

In this section, we consider the plasma consisting of cold ions and two distinct group
of electrons, cold electrons (nc, Tc) and hot electrons (nh, Th), where the Lorentzian
(kappa) distribution assumed for electrons in the form:

nc =

(
1− φ

κc − 3
2

)−κc+
1
2

, (2.1)

nh =

(
1− σφ

κh − 3
2

)−κh+
1
2

. (2.2)

The nonlinear dynamics of the cold ions, is described as follow normalized equations

∂n

∂t
+

∂(nu)

∂x
= 0, (2.3)

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
, (2.4)

∂2φ

∂x2
= (1− f)nc + fnh − n. (2.5)

The quantities n, nc and nh are the ion, cold and hot electrons densities normalized
by the unperturbed density nj0 (j = i, c, h), u is the ion fluid velocity normalized by

ion-acoustic speed Cs = (kBTc/mi)
1/2, where kB and Tc are the Boltzmann’s constant

and cold electron temperature, respectively. The space coordinate x and time t are
normalized by the ion Debye length λD = (kBTc/4πe

2ni0)
1/2 and ion plasma period

ωpi = (4πe2ni0/mi)
1/2, respectively. The quantity φ is the normalized by kBTc/e,

where e is the electron charge. In equilibrium state we have ni0 = nc0 + nh0, or
nc0/ni0 = 1 − f . Here σ = Tc/Th, f = nh0/ni0 and the real parameters κc and κh

are the spectral index that measuring deviation from Maxwellian equilibrium for cold
and hot electrons, respectively.
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Now for solving the nonlinear equations (2.3)–(2.5), we apply the reductive pertur-
bation technique to find the evolution equation, extended KdV equation, in present
plasma model. The perturbed quantities can be expanded in the power series of ε as
follows  n

u
φ

 =

 1
0
0

+ ε

 n1

u1

φ1

+ ε2

 n2

u2

φ2

+ ε3

 n3

u3

φ3

+ .... (2.6)

To study the double layers and obtaining extended KdV equation the independent
variables are stretched as

ξ = ε(x− λt), τ = ε3t, (2.7)

where ε is a small parameter and λ is the phase velocity of solitons.
Substituting (2.6) and (2.7) into the system of (2.1) - (2.5) and collecting the terms
of various powers of ε, we obtain the following expressions to the lowest order of ε:

n1 =
1

λ2
φ1, u1 =

1

λ
φ1. (2.8)

Now, using the first order relations given in Eq. (2.8) into the lowest order of the
Poisson equation we have

λ =

√
1

C1(1− f) +D1fσ
, (2.9)

C1 =
κc − 1

2

κc − 3
2

, D1 =
κh − 1

2

κh − 3
2

. (2.10)

The next order of ε for the density and velocity of ions lead to

n2 =
3

2λ4
φ2
1 +

1

λ2
φ2, (2.11)

u2 =
1

2λ3
φ2
1 +

1

λ
φ2. (2.12)

Also, from the Poisson equation for the next higher order ε have(
(1− f)C1 + fD1σ − 1

λ2

)
φ2 =

[
3

2λ4
−
(
(1− f)C2 + fD2σ

2
)]

(φ1)
2,

(2.13)

where

C2 =
(κc − 1

2 )(κc +
1
2 )

2(κc − 3
2 )

2
, D2 =

(κh − 1
2 )(κh + 1

2 )

2(κh − 3
2 )

2
. (2.14)

According to Eq. (2.9), the left-hand side of Eq. (2.13) is zero. Since on the right-
hand side φ1 ̸= 0, then term in the square bracket on the right-hand side of Eq. (2.13)
should be at least of the first order of ε showing that Eq. (2.13) is now of the third
order of ε. Therefore, the term in the square bracket in Eq. (2.13) should be added
in the third order terms of Poisson equation, which gives a favorable condition for
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DL, i.e., shock like structures instead of solitons (Watanabe 1984). Therefore, from
the next higher order of ε we have

∂n1

∂τ
− λ

∂n3

∂ξ
+

∂(n2u1)

∂ξ
+

∂(n1u2)

∂ξ
+

∂u3

∂ξ
= 0, (2.15)

∂u1

∂τ
+ u2

∂u1

∂ξ
+ u1

∂u2

∂ξ
− λ

∂u3

∂ξ
+

∂φ3

∂ξ
= 0, (2.16)

∂2φ1

∂ξ2 +
[

3
2λ4 −

(
(1− f)C2 + fσ2D2

)]
(φ1)

2 =

1
λ2φ3 + 2

(
(1− f)C2 + fσ2D2

)
(φ1φ2)+(

C3(1− f) + fσ3D3

)
φ3
1 − n3.

(2.17)

By solving Eqs. (2.15)– (2.17) along with the first and second order solutions, we ob-
tain the following extended KdV equation expressed in terms of first-order perturbed
potential φ1, i.e.,

∂φ1

∂τ
+ P

∂φ2
1

∂ξ
+Q

∂φ3
1

∂ξ
+R

∂3φ1

∂ξ3
= 0, (2.18)

and

P =
λ3

2
[
3

2λ4
−
(
C2(1− f) +D2fσ

2
)
],

Q =
λ3

2

(
5

2λ6
− C3(1− f)− fσ3D3

)
,

R =
λ3

2
, (2.19)

C3 =
(κc − 1

2 )(κc +
1
2 )(κc +

3
2 )

6(κc − 3
2 )

3
, D3 =

(κh − 1
2 )(κh + 1

2 )(κh + 3
2 )

6(κh − 3
2 )

3
.

3. Basic structure of analytical method

Suppose the general nonlinear partial differential equation,

P (u, uτ , uξ, uττ , uξξ, ...) = 0, (3.1)

where u = u (ξ, τ) is an unknown function,P is a polynomial in u (ξ, τ) and its partial
derivatives in which the highest order partial derivatives and the nonlinear terms are
involved. The main steps of new extension of (G′/G)-expansion method combined
with the algebra expansion are as follows:
Step 1. The traveling wave variable ansatz,

χ = ξ ± ωτ, u (ξ, τ) = u (χ) , (3.2)

where ω ∈ ℜ−{0} is the speed of the traveling wave, permits us to transform the Eq.
(3.1) into the following ODE

Q (u, u′, u′′, ...) = 0, (3.3)
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where the superscripts stand for the ordinary derivatives with respect to ξ.

Step 2. Suppose the traveling wave solution of Eq. (3.3) can be expressed by a
polynomial in F (ξ) as follows

u (χ) =
n∑

i=0

αi (m+ F (χ))
i
+

n∑
i=1

βi (m+ F (χ))
−i

, (3.4)

where F (ξ) = G′/G, αn and βn are not zero simultaneously. Also G = G (ξ) satisfies
the ordinary differential equation,

G′′ (χ) + λG′ (χ) + µG (χ) = 0, (3.5)

where λ and µ are arbitrary constants to be determined later. The solutions of Eq.
(3.5) can be written as follows

Hyperbolic function solutions:
When Ω = λ2 − 4µ > 0 ,

F1 =

√
Ω

2
coth

(
A+

√
Ω

2
χ

)
− λ

2
, (3.6)

F2 =

√
Ω

2
tanh

(
A+

√
Ω

2
χ

)
− λ

2
. (3.7)

Trigonometric function solutions:
When Ω = λ2 − 4µ < 0 ,

F3 =

√
Ω

2
cot

(
A+

√
Ω

2
χ

)
− λ

2
, (3.8)

F4 =

√
Ω

2
tan

(
A−

√
Ω

2
χ

)
− λ

2
. (3.9)

Rationalfunction solutions:
When Ω = λ2 − 4µ = 0 ,

F5 =
B

A+Bχ
− λ

2
. (3.10)

Step 3. The positive integer n can be determined by considering the homogeneous
balance between the highest order derivatives and the nonlinear terms appearing
in Eq. (3.1) or Eq. (3.3). Moreover precisely, we define the degree of u (χ) as
D (u (χ)) = n which gives rise to the degree of other expression as follows

D

(
dzu

dχz

)
= n+ z, D

(
ur

(
dzu

dχz

)s)
= nr + s (n+ z) . (3.11)

Therefore we can find the value of n in Eq. (2.3), using Eq. (3.11).
Step 4. Substituting Eq. (3.4) along with Eq. (3.5) into Eq. (3.3) together with the
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value of n obtained in step 3, we obtain polynomials in F i and F−i (i = 1, 2, 3, ...),
then setting each coefficient of the resulted polynomial to zero, yields a system of
algebraic equations for αn, βn and ω.

Step 5. Suppose the values of the constants αn, βn and ω can be determined by
solving the system of algebraic equations obtained in step 4. Since the general solu-
tions of Eq. (3.5) are known, substituting αn, βn and ω into Eq. (3.4), we obtain
some exact traveling wave solutions of the nonlinear evolution Eq. (3.1).
Now from above, we will exert the analytical method to obtain new and more general
exact solutions and then the solitary wave solutions of the extended KdV equation
(2.18).
For this aim we by combining the variables ξ and τ into one variable χ = ξ − V τ( V
is the wave velocity) and to integrating with respect to χ, Eq. (2.18) is transformed
as

−V φ1 + Pφ2
1 +Qφ3

1 +Rφ
′′

1 + s = 0, (3.12)

where φ
′

1 = dφ1/dχ.
Thus using (3.12) and considering the homogeneous balance between φ3

1 and d2φ1/dχ
2

in Eq. (3.12) we obtain that n = 1. This, indubitably, allows us to assume that the
solution is in form

φ1 = α0 + α1 (m+ F ) + β1 (m+ F )
−1

. (3.13)

Now substituting Eq. (3.13) along with Eq. (2.4) into Eq. (3.12), we get a polynomial
in F (χ). Equating the coefficient of same power of
F i (χ) (i = 0,±1,±2, ...), we attain the system of algebraic equations and by solving
these obtained system of equations for α0, α1, β1 and m and by solving obtained
system we get the following values:

Set 1.

α1=
√

−2R
Q ,

β1 = −2
3

√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +
√

−2R
Q λ− 2

3

√
−2R
Q m,

α0 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ,

Set 2.

α1 = 0,

β1 = ∓ Rµ(m2−λm+µ)√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

,

α0 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ,

Set 3.
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α1 = ∓ R(−3λ+2m)√
P 2+3Qv−3QRλ2−6QRµ+6QRmλ

,

β1 = 0,

α0 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ,

Where

P =
λ3

2
[
3

2λ4
−
(
C2(1− f) +D2fσ

2
)
],

Q =
λ3

2

(
5

2λ6
− C3(1− f)− fσ3D3

)
,

R =
λ3

2
,

C2 =
(κc − 1

2 )(κc +
1
2 )

2(κc − 3
2 )

2
, D2 =

(κh − 1
2 )(κh + 1

2 )

2(κh − 3
2 )

2
,

C3 =
(κc − 1

2 )(κc +
1
2 )(κc +

3
2 )

6(κc − 3
2 )

3
, D3 =

(κh − 1
2 )(κh + 1

2 )(κh + 3
2 )

6(κh − 3
2 )

3
.

3.1. Hyperbolic function solutions. When Ω = λ2 − 4µ > 0, we get the following
solutions;
Family 1. By using set 1 and Eqs. (26-27) along with (3.13) we have solutions of
Eq. (2.18) as follow

φ1−1 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +√
−2R
Q

(
m+

√
λ2−4µ

2 coth

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
+(

− 2
3

√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +
√

−2R
Q λ− 2

3

√
−2R
Q m

)
×(

m+

√
λ2−4µ

2 coth

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

,

and

φ1−2 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +√
−2R
Q

(
m+

√
λ2−4µ

2 coth

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
+(

− 2
3

√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +
√

−2R
Q λ− 2

3

√
−2R
Q m

)
×(

m+

√
λ2−4µ

2 tanh

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

.

Family 2. By using set 2 and Eqs. (26-27) along with (3.13) we have solutions of
Eq. (2.18) as follow
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φ1−3 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +(
∓ Rµ(m2−λm+µ)√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

)
×(

m+

√
λ2−4µ

2 coth

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

,

and

φ1−4 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +(
∓ Rµ(m2−λm+µ)√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

)
×(

m+

√
λ2−4µ

2 tanh

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

.

Family 3. By using set 3 and Eqs. (26-27) along with (3.13) we have solutions of
Eq. (2.18) as follow

φ1−5 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ∓
R(−3λ+2m)√

P 2+3Qv−3QRλ2−6QRµ+6QRmλ
×(

m+

√
λ2−4µ

2 coth

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
,

and

φ1−6 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ∓
R(−3λ+2m)√

P 2+3Qv−3QRλ2−6QRµ+6QRmλ
×(

m+

√
λ2−4µ

2 tanh

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
.

3.2. Trigonometric function solutions. When Ω = λ2 − 4µ < 0;
Family 4. By using set 1 and Eqs. (28-29) along with (3.13) we have solutions of
Eq. (2.18) as follow

φ1−7 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +√
−2R
Q

(
m+

√
λ2−4µ

2 cot

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
+(

− 2
3

√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +
√

−2R
Q λ− 2

3

√
−2R
Q m

)
×(

m+

√
λ2−4µ

2 cot

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

,
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and

φ1−8 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +√
−2R
Q

(
m+

√
λ2−4µ

2 tan

(
A−

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
+(

− 2
3

√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +
√

−2R
Q λ− 2

3

√
−2R
Q m

)
×(

m+

√
λ2−4µ

2 tan

(
A−

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

.

Family 5. By using set 2 and Eqs. (28-29) along with (3.13) we have solutions of
Eq. (2.18) as follow

φ1−9 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +(
∓ Rµ(m2−λm+µ)√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

)
×(

m+

√
λ2−4µ

2 cot

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

,

and

φ1−10 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +(
∓ Rµ(m2−λm+µ)√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

)
×(

m+

√
λ2−4µ

2 tan

(
A−

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)−1

.

Family 6. By using set 3 and Eqs. (28-29) along with (3.13) we have solutions of
Eq. (2.18) as follow

φ1−11 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ∓
R(−3λ+2m)√

P 2+3Qv−3QRλ2−6QRµ+6QRmλ
×(

m+

√
λ2−4µ

2 cot

(
A+

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
,

and

φ1−12 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ∓
R(−3λ+2m)√

P 2+3Qv−3QRλ2−6QRµ+6QRmλ
×(

m+

√
λ2−4µ

2 tan

(
A−

√
λ2−4µ

2 (ξ − V τ)

)
− λ

2

)
.

3.3. Rational function solutions. When Ω = λ2 − 4µ = 0;
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Family 7. By using set 1 and Eq. (3.10) along with (3.13) we have solutions of Eq.
(2.18) as follow

φ1−13 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +√
−2R
Q

(
m+ B

A+B(ξ−V τ) −
λ
2

)
+(

− 2
3

√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +
√

−2R
Q λ− 2

3

√
−2R
Q m

)
×(

m+ B
A+B(ξ−V τ) −

λ
2

)−1

.

Family 8. By using set 2 and Eq. (3.10) along with (3.13) we have solutions of Eq.
(2.18) as follow

φ1−14 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q +

∓ Rµ(m2−λm+µ)√
P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

×
(
m+ B

A+B(ξ−V τ) −
λ
2

)−1

.

Family 9. By using set 3 and Eq. (3.10) along with (3.13) we have solutions of Eq.
(2.18) as follow

φ1−15 = 1
3

−P±
√

P 2+3Qv−3QRµλ−3QRλm2+3QRλ2m

Q ∓
R(−3λ+2m)√

P 2+3Qv−3QRλ2−6QRµ+6QRmλ

(
m+ B

A+B(ξ−V τ) −
λ
2

)
.

In all above solutions we have,

P =
λ3

2
[
3

2λ4
−
(
C2(1− f) +D2fσ

2
)
],

Q =
λ3

2

(
5

2λ6
− C3(1− f)− fσ3D3

)
,

R =
λ3

2
,

C2 =
(κc − 1

2 )(κc +
1
2 )

2(κc − 3
2 )

2
, D2 =

(κh − 1
2 )(κh + 1

2 )

2(κh − 3
2 )

2
,

C3 =
(κc − 1

2 )(κc +
1
2 )(κc +

3
2 )

6(κc − 3
2 )

3
, D3 =

(κh − 1
2 )(κh + 1

2 )(κh + 3
2 )

6(κh − 3
2 )

3
.

Next for more reviews we consider e graphical behavior of hyperbolic, trigonometric
and rational functions solutions of Eq. (2.18) in one case.



CMDE Vol. 5, No. 4, 2017, pp. 256-270 267

Figure 1. Graphical behavior of hyperbolic solutions of Eq. (2.18).

Figure 2. Graphical behavior of hyperbolic solutions of Eq. (2.18).

4. Conclusion

In this Letter, the new extended analytical (G’/G)-expansion method has been suc-
cessfully applied to find the exact solitary wave solutions for double layers structure
model of extended Korteweg-de Vries (KdV) equation. The obtained results show that
the method is very powerful and convenient mathematical tool for nonlinear evolution
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Figure 3. Graphical behavior of trigonometric solutions of Eq. (2.18).

Figure 4. Graphical behavior of trigonometric solutions of Eq. (2.18).

equations in science and engineering. Now we briefly summarize the method in the
following. Firstly, the main points of the method are that assuming the solution of
the ODE reduced by using the travelling wave variable as well as integrating can be
expressed by an mth degree polynomial in (G’/G), where G = G(ξ) is the general
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Figure 5. Graphical behavior of rational solutions of Eq. (2.18).

solutions of a second order LODE, the positive integer m is determined by the homoge-
neous balance between the highest order derivatives and nonlinear terms appearing in
the reduced ODE, and the coefficients of the polynomial can be obtained by solving a
set of simultaneous algebraic equations resulted from the process of using the method.
Secondly, it is important to solve the algebraic equations resulted. Generally speak-
ing, if the order of the reduced ODE is equal to or less than 3 (in the circumstances,
the number of the equations included in the set of algebraic equations is generally
equal to or less than that of the unknowns), with the aid of MATHEMATICA or
MAPLE it is mostly possible to find out a useful solution of the algebraic equations
resulted. Otherwise, it is generally unable to guarantee the existence of a solution of
the algebraic equations resulted, this is because the number of the equations included
in the set of algebraic equations is generally great than that of the unknowns. In
spite of this, the (G’/G)-expansion is still a useful method for finding travelling wave
solutions of nonlinear evolution equations, the reason is as follows. On comparing
between the (G’/G)-expansion method and the other methods such as the modified
tanhcoth method, we conclude that the (G’/G)- expansion method is more powerful,
effective and convenient. The performance of this method is reliable, simple and gives
many new exact solutions. The (G’/G)-expansion method has more advantages: It
is direct and concise. It is also a standard and computerizable method which allows
us to solve complicated nonlinear evolution equations in mathematical physics. We
have noted that the (G’/G)-expansion method changes the given difficult problems
into simple problems which can be solved easily.
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