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Abstract In this paper, numerical solution of the Benjamin-Bona-Mahony-Burgers(BBMB)
equation is obtained by using the mesh-free method based on the collocation method
with radial basis functions(RBFs). Stability analysis of the method is discussed. The

method is applied to several examples and accuracy of the method is tested in terms
of L2 and L∞ error norms.
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1. Introduction

The mathematical model of propagation of small-amplitude long waves in nonlin-
ear dispersive media is described by the following Benjamin-Bona-Malony-Burgers
(BBMB) equation:

ut − uxxt − αuxx + βux + γuux = 0, (x, t) ∈ Ω× (0, T ], (1.1)

with the boundary conditions:

u(a, t) = g1(t), u(b, t) = g2(t), t ∈ (0, T ], (1.2)

and initial condition

u(x, 0) = f(x), x ∈ Ω. (1.3)

where Ω = (0, 1) and α, β, γ > 0. The BBMB problem has been numerically tackled
and investigated by many authors. A spline collocation method for approximating
the solution of (1.1) can be found in Manickam et al.[8]. A mesh-free method based
on radial basis function will discussed in this paper for finding approximate solution
of BBMB equation. This method introduced by Hardy in 1971 [6]. Kansa [5] in 1990
used modified MQ scheme to solve partial differential equations. So, Frank in 1982,
observed radial basis function is better than all other methods regarding efficiency,
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stability, uniqueness. Also convergence of the method was discussed by Michelson
[10], Michelli [9] and Frank [4].

We apply this method by RBFs such as: ϕ(r) =
√
r2 + c2(MQ), ϕ(r) = 1/(r2 +

c2)(IQ), ϕ(r) = 1/
√
r2 + c2(IMQ) and ϕ(r) = exp(−c2r2)(GA) to obtain solution of

BBMB equation.
The layout of this paper is as follows. In section 2, we will illustrate how the RBFs
method may be used to Equation (1.1) by an explicit system of algebraic equations.
Section 3, is devoted to stability analysis of the method. In section 4, several examples
are solved and accuracy of numerical scheme is tested. In section 5, we conclude our
results.

2. Structure of the method

We consider the BBMB equation

ut − uxxt − αuxx + βux + γuux = 0, a ≤ x ≤ b, t ≥ 0, (2.1)

with the initial and boundary conditions

u(x, 0) = f(x), a < x < b, (2.2)

(2.3)

u(a, t) = g1(t), u(b, t) = g2(t), t ≥ 0. (2.4)

By applying Crank-Nicolson scheme to Equation (2.1) we obtain:

[
un+1 − un

∂t
]− [

(uxx)
n+1 − (uxx)

n

∂t
]− α[

(uxx)
n+1 + (uxx)

n

2
]

+β[
(ux)

n+1 + (ux)
n

2
] + γ[

(uux)
n+1 + (uux)

n

2
] = 0. (2.5)

Where un+1 = u(x, tn+1), tn+1 = tn + δt and δt is the time step.
The term (uux)

n+1 in above equation shows that Equation (2.5) is nonlinear. For
linearization this term we apply following formula:

(uux)
n+1 ≈ unun+1

x + un+1un
x − unun

x . (2.6)

Substituting Equation (2.6) in Equation (2.5) we will have

un+1 − un+1
xx +

δt

2
[−α(uxx)

n+1 + β(ux)
n+1 + γ(u)n+1un

x + γ(u)nun+1
x ]

= un − un
xx − δt

2
[−α(uxx)

n + β(ux)
n], (2.7)

where un is approximate solution in nth time step. Let us approximate the solution
of Equation (2.1) by:

un(xi) =

N∑
j=0

λn
j φ(rij), (2.8)
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where ϕ is radial basis function. rij = ∥xi − xj∥ is Euclidian distance, xj = a+ jδx,
j = 0(1)N are centers in [a,b], and xi = a+ iδx are collocation points in [a,b]. Using
Equation (2.7) and (2.8), for xi, i = 1(1)N we get the following equation:
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where φ
′
(rij) = ∂

∂xφ(∥x − xj∥)|x=xi and φ
′′
(rij) = ∂2

∂x2φ(∥x − xj∥)|x=xi and i =
1(1)N − 1. Also, from Equation (2.8) and (2.4) we obtain following equation for the
boundary conditions,

N∑
j=0

λn+1
j φ(r0j) = g1(t),

N∑
j=0

λn+1
j φ(rNj) = g2(t). (2.10)

The system (2.9) and (2.10) contain N+1 equations and N+1 unknowns λn+1
j which

can be obtain by Gaussian elimination method. First, we find value of u0 from initial
condition and then determine value of λ0

j from Equation (2.8). Matrix form of this
system can be written as:

[A1 −D2 +
δt

2
[−αD2 + βD1 + γ(A2 ∗ un

x + un ∗D1)]]λ
n+1
j

= [A2 −D2 −
δt

2
(−αD2 + βD1)]λ

n
j +Gn+1, (2.11)

where A1 = [φ(rij)]
N
i,j=0 and

A2 = [φ(rij) : 1 ≤ i ≤ N − 1 , 0 ≤ j ≤ N and 0 elsewhere],

Dk = [φ(k)(rij) : 1 ≤ i ≤ N − 1 , 0 ≤ j ≤ N and 0 elsewhere], k = 1, 2,

Gn+1 = [gn+1
1 (t), 0, . . . , 0, gn+1

2 (t)]T ,

and

un = A2λ
n, un

x = D1λ
n.

The symbol ” ∗ ” means the ith component of the vector un and un
x are multiplied to

all element in the ith row of the matrices D1 and A2 respectively. By attention to
Equation (2.11), we have:

λn+1 = M−1Nλn +M−1Gn+1, (2.12)
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where

M = [A1 −D2 +
δt

2
[−αD2 + βD1 + γ(A2 ∗ un

x + un ∗D1)]],

N = [A2 −D2 −
δt

2
[−αD2 + βD1]].

by using Equation (2.8) and (2.12) we can write

un+1 = A1M
−1NA−1

1 un +A1M
−1Gn+1. (2.13)

From Equation (2.13) we can find the solution at any time level n. For distinct collo-
cation points, A1 is always invertible [9]. Invertibility of matrix M cannot be provide,
but in case of parameter-dependent RBFs, invertibility of M depends on shape pa-
rameters c. Optimal value of c calculate numerically in any problem.

Algorithm
1. choose N collocation point from the domain set [a,b].
2. choose the parameter δt.
3. Obtain the initial solution u0 from Equation (2.2) and then find

λ0 = A−1
1 u0 from Equation (2.8).

4. The parameters λn+1
j are calculate from Equation (2.12).

5. Finally, un+1 at the successive time levels is obtained from step 4
and Equation (2.13).

3. Stability analysis

In this section we discuss stability of presented scheme (2.11), using the matrix
method. To apply this method, we have linearized the non-linear term uux by as-
suming u as a constant. The error en at the nth time level is given by:

en = un
exact − un

app, (3.1)

where un
exact and un

app are the exact and approximate solution at the nth time level
respectively. The error equation for Equation (1.1) is as follows:

[H +
δt

2
K]en+1 = [B − δt

2
K]en, (3.2)

where K = [−αD2 + βD1]A
−1
1 , H = [A1 − D2]A

−1
1 and B = [A2 − D2]A

−1
1 . Let

P = [H + δt
2 K]−1[B − δt

2 K], now we can write Equation (3.2) as follow:

en+1 = Pen. (3.3)

Numerical scheme is stable if ∥P∥2 ≤ 1, which is equivalent to ρ(P ) ≤ 1, where ρ(P )
denotes the spectral radius of the matrix P . By attention to above subjects, stability
is assured if maximum eigenvalue of P satisfied in below condition:

|
λB − δt

2 λK

λH + δt
2 λK

| ≤ 1, (3.4)
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where λH , λB and λK , are eigenvalue of the matrices H, B and K, respectively. For
real eigenvalues, the inequality (3.4) hold true if −λH ≤ λB and λB ≤ λH + λKδt.
This shows that the scheme (2.11), is stable if

− λH ≤ λB ≤ λH + λKδt. (3.5)

For complex eigenvalue λB = ab + ibb, λH = ah + ibh and λK = ak + ibk,where
ab, bb, ah, bh, ak and bk are real numbers, Equation (3.2) takes the following form:

|
(ab − δt

2 ak) + i(bb − δt
2 bk)

(ah + δt
2 ak) + i(bh + δt

2 bk)
| ≤ 1. (3.6)

The Equation (3.6) is satisfied if:

δt[ak(ab + ah) + bk(bh + bb)] + (b2h − b2b) ≥ 0, (3.7)

and the scheme is stable.
The stability of the scheme (2.11) and conditioning of the component matrices H,K
and B of the matrix P depend on the minimum distance between any two collocation
points δx, in the domain set [a, b], and the local shape parameter c.

4. Numerical solution

In this section we consider examples that solved by presented method in previous
section. In order to illustrate the accuracy of the method, we used the error norm L2

and L∞ which are defined as follows:

L2 = ∥uexact − uapp∥2 = [δx

N∑
j=0

(uexact − uapp)2]1/2, (4.1)

(4.2)

L∞ = ∥uexact − uapp∥∞ = max
j

|uexact − uapp|, (4.3)

where δx is spatial step.

Example 4.1. Consider the BBMB equation

ut − uxxt − αuxx + βux + γuux = 0, (4.4)

with the following initial condition:

u(x, 0) = sinx. (4.5)

Exact solution of the above problem is given by

u(x, t) = e−t sinx, (4.6)

where α = β = γ = 1. The boundary conditions are taken from the exact so-
lution. We solved the Example 4.1 for different values of t, δt = 0.02, N = 20 and
[a,b]=[-10,10]. We used MQ, IMQ and GA radial basis functions with shape parame-
ter respectively 0.001, 0.01 and 4.5. Table 1 shows the L2 and L∞ in t = 0.02, 1, 10, 15.
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Table 1. Numerical results for Example 4.1.

RBF Time L∞ L2

GA
0.02 4.66869× 10−4 1.44763× 10−3

1 8.8652× 10−3 2.74763× 10−2

10 1.2221× 10−5 3.78939× 10−5

15 1.31572× 10−7 4.07967× 10−7

MQ
0.02 9.67623× 10−5 2.30278× 10−4

1 1.84825× 10−3 4.32048× 10−3

10 2.56153× 10−6 6.13605× 10−6

15 2.779× 10−8 7.00093× 10−8

IMQ
0.02 1.30952× 10−6 4.02232× 10−6

1 2.45495× 10−5 7.54975× 10−5

10 3.02594× 10−8 9.32299× 10−8

15 3.05851× 10−10 9.42446× 10−10

Table 2. L∞ and L2 norm with increasing N for Example 4.1.

RBF N L∞ L2

MQ
20 2.88619× 10−10 7.31725× 10−10

40 1.09293× 10−9 3.00421× 10−9

60 3.25813× 10−9 9.56447× 10−9

GA
20 1.26062× 10−9 3.90885× 10−9

40 1.48735× 10−9 4.56714× 10−9

60 1.25202× 10−8 3.70878× 10−8

IMQ
20 2.74808× 10−12 8.46838× 10−12

40 2.89735× 10−12 8.87604× 10−12

60 3.11628× 10−12 9.47935× 10−12

Table 1 shows that IMQ has better accuracy than MQ and GA. The value of L∞
and L2 with increasing N in t = 20 is shown in Table 2.

Example 4.2. Consider the BBMB Equation (1.1) with initial condition

u(x, 0) = sech2(x/4), x ∈ R, (4.7)

and exact solution

u(x, t) = sech2
(x
4
− 1

3
t
)
, (4.8)
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Figure 1. The surface shows the exact solution of BBMB Equation
(4.4) when α = β = γ = 1.
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Table 3. Numerical results for Example 4.2.

RBF Time L∞ L2

MQ
0.1 9.61141× 10−7 1.33296× 10−6

0.5 5.62261× 10−6 6.75616× 10−6

1 1.39236× 10−5 1.40979× 10−5

2 4.72334× 10−5 3.82213× 10−5

IQ
0.1 5.88745× 10−7 1.0765× 10−6

0.5 2.08331× 10−6 4.41492× 10−6

1 3.98593× 10−6 8.67292× 10−6

2 7.82587× 10−6 1.71645× 10−5

IMQ
0.1 1.0724× 10−6 2.57134× 10−6

0.5 3.1115× 10−6 6.35206× 10−6

1 5.44985× 10−6 1.14811× 10−5

2 9.1596× 10−6 1.98248× 10−5

where β = γ = 1 and α = 0 and this equation is said BBM equation. Tables 3 shows
numerical results, for δt = 0.02, N = 60, [a,b]=[-10,10], c(MQ) = 1.1, c(IMQ) = 2.5
and c(IQ) = 2.5. Table 4 shows accuracy with increasing N in t = 0.5.
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Figure 2. The surface shows the exact solution of BBMB Equation
(4.4) when α = 0 and β = γ = 1.
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Table 4. L∞ and L2 norm with increasing N for Example 4.2.

RBF N L∞ L2

MQ
20 4.91306× 10−4 9.21948× 10−4

40 1.46943× 10−5 1.57072× 10−5

60 5.62261× 10−6 6.75616× 10−6

IQ
20 6.59187× 10−6 9.98726× 10−6

40 1.88261× 10−6 4.33411× 10−6

60 2.08331× 10−6 4.41492× 10−6

IMQ
20 1.15288× 10−4 1.64105× 10−4

40 2.20596× 10−6 4.77047× 10−6

60 3.1115× 10−6 6.35206× 10−6

5. Conclusions

In this work, we have applied mesh-free method for solution of BBMB equation
based on radial basis function. The numerical results and tables show that errors are
very small and this scheme is accurate and efficient approach for the solution of such
type of nonlinear partial differential equations.
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