تعداد نشریات | 44 |
تعداد شمارهها | 1,312 |
تعداد مقالات | 16,138 |
تعداد مشاهده مقاله | 52,723,442 |
تعداد دریافت فایل اصل مقاله | 15,390,473 |
Existence results of infinitely many solutions for a class of p(x)-biharmonic problems | ||
Computational Methods for Differential Equations | ||
مقاله 5، دوره 5، شماره 4، دی 2017، صفحه 310-323 اصل مقاله (391.08 K) | ||
نوع مقاله: Research Paper | ||
نویسندگان | ||
Saeid Shokooh* 1؛ Ghasem Alizadeh Afrouzi2 | ||
1Department of Mathematics, Faculty of Sciences, Gonbad Kavous University, Gonbad Kavous, Iran | ||
2Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
چکیده | ||
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out. | ||
کلیدواژهها | ||
Ricceri's Variational Principle؛ infinitely many solutions؛ Navier condition؛ $p(x)$-biharmonic type operators | ||
آمار تعداد مشاهده مقاله: 788 تعداد دریافت فایل اصل مقاله: 701 |