تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,751 |
تعداد مشاهده مقاله | 51,867,024 |
تعداد دریافت فایل اصل مقاله | 14,690,724 |
استفاده از روشهای پیش پردازش SOM و تبدیل موجک در پیشبینی تراز آب زیرزمینی (مطالعه موردی: دشت آذرشهر) | ||
هیدروژئولوژی | ||
مقاله 2، دوره 3، شماره 1، شهریور 1397، صفحه 15-32 اصل مقاله (1.52 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hydro.2018.6449 | ||
نویسندگان | ||
فرناز دانشور وثوقی* 1؛ علی کریمی2 | ||
1گروه مهندسی عمران، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران | ||
2گروه مهندسی عمران، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران. | ||
چکیده | ||
پیشبینی سطح آب زیرزمینی یک حوضه نقش مهمی را در مدیریت منابع آبی ایفا میکند. بهخصوص در مناطق نیمهخشک آبهای زیرزمینی نقش بسیار مهمی در تعیین آب مورد نیاز، کشاورزی، شهری و امور صنعتی دارد. مطالعه حاضر در دو سناریو به پیشبینی تراز آب زیرزمینی در دشت آذرشهر با استفاده از ابزارهای پیشپردازش پرداخته است. برای انجام پیشپردازش مکانی از ابزار خوشهبندی بهوسیله نقشههای خودسازمانده(SOM)، برای پیشپردازش زمانی از تبدیل موجک و برای مدلسازی از شبکه عصبی مصنوعی استفاده شده است. نقشههای خود سازمانده برای تعیین مناطقی همگن از نظر دادههای آب زیرزمینی جهت استفاده در مدل شبکه عصبی برای مدلسازی منابع آب زیرزمینی استفاده شد. تبدیل موجک برای استخراج ویژگیهای زمانی و نا ایستایی سریهای زمانی تراز آب زیرزمینی بکار رفت. نتایج نشان داد که استفاده از تبدیل موجک و ترکیب آن با شبکه عصبی مصنوعی در مدلسازی تراز آب زیرزمینی دشت آذرشهر باعث بهبودی 6/11 درصدی در دقت مدلسازی، در گامهای صحتسنجی در سناریو اول و بهبودی 5/23 درصدی در سناریو دوم شد. میتوان نتیجه گرفت استفاده از روشهای نوین مدلسازی مانند استفاده از ابزارهای پیشپردازش زمانی و مکانی باعث افزایش قابل توجه دقت مدلسازی میگردد. | ||
کلیدواژهها | ||
پیشپردازش؛ تبدیل موجک؛ تراز آب زیرزمینی؛ دشت آذرشهر؛ شبکه عصبی مصنوعی | ||
مراجع | ||
رجایی، ط. و ابراهیمی، ه.، 1393. مدلسازی نوسانهای ماهانه آب زیرزمینی بهوسیله تبدیل موجک و شبکه عصبی پویا. مدیریت آب و آبیاری، (1)4، 115-99. رجایی، ط. و زینیوند، آ.، 1393. مدلسازی تراز آب زیرزمینی با بهرهگیری از مدل هیبریک موجک- شبکه عصبی مصنوعی. نشریه مهندسی عمران و محیطزیست، (4)44، 63-51. ملکینژاد، ح. پورشریعاتی، ر.،1392. کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیشبینی تغییرات سطح آب زیرزمینی (مطالعه موردی: دشت مروست). علوم مهندسی آبیاری (مجله کشاورزی)، (3)36، 92-81. Abrahart, R. J., Anctil, F., Coulibaly, Dawson, Mount, N. j., See, L., Shamseldin, A., Solomatine, D., Toth, E., Wilby, L. R., 2012. Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Progress in Physical Geography., 36(4), 480-513. Adamowski, J., 2008. Development of a short-term river flood forecasting method based on wavelet analysis, Journal of Hydrology, 353(3-4), 247-266. ASCE Task Committee on application of artificial neural network in hydrology, 2000. Artificial neural network in hydrology 1: Hydrology application, Journal of HydrologicEngineering, 5(2), 124-137. Aussem, A., Campbell, j., Murtagh, F., 1998. Wavelet-based feature extraction and decomposition strategies for financial forecasting, International Journal of Soft Computing and Engineering, 6(2), 5-12. Chae, G. T., Kim, K., Yun, S. T., Kim, K. H., Kim, S. O., Choi, B. Y., Kim, H. S. and Rhee, C. W. , 2004. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility, Chemosphere, 55, 369-378. Chang, F.J., Chang, L.C., Huang, C.W., Kao, I.F., 2016. Prediction of monthly regional groundwater levels through hybrid soft-computing techniques, Journal of Hydrology, 541, 965-976. Chen, L. H., Chen, C. T and Pan, Y. G., 2010. Groundwater level prediction using SOM-RBFN multisite model. Journal of Hydrologic Engineering, 15, 624-631. Chen, L.H., Chen, C.T., Li, D.W., 2011. Application of integrated back-propagation network and self-organizing map for groundwater level forecasting, Water Resources Management, 137 (4), 352–365. Choi, B. Y., Yun, S. T., Kim, K. H., Kim J. W., Kim, H. M. and Koh, Y. K., 2014. Hydrogeochemical interpretation of South Korean groundwater monitoring data using Self- Organizing Maps, Journal of Geochemical Exploration, 137, 73-84. Han, J.C., Huang, Y., Li, Z., Zhao, C., Cheng, G., Huang, P., 2016. Groundwater level prediction using a SOM-aided stepwise cluster inference model, Journal of Environmental Management, 182, 308-321.
Hsu, K.C., and Li, S.T., 2010. Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network, Advances in Water Resources, 33, 190-200. Kisi, O., 2008. Stream flow forecasting using neuro- wavelet technique, Hydrological processes, 22(20), 4142- 4152. Jain, A.K., 2010. Data clustering: 50 years beyond k-means, Pattern Recognition Letters, 31,615-666. Kohonen, T., 1998. The Self organizing map, Neurocomputing, 21, 1-6. Koonce, J. E., Yu, Z., Farnham, I. M. and Stetzenbach, K. J., 2006 Geochemical interpretation of groundwater flow in the southern. Geosphere, 2, 88-101. Moosavi, V., Vafakhah, M., Shirmohammadi, B. and Ranjbar, M., 2014. Optimization of wavelet- ANFIS and wavelet- ANN hybrid models by Taguchi method for groundwater level forecastion, Arabian Journal for Science and Engineering, 39(3), 1785-1796. Nayak, P. C., Satyaji rao, Y. P., 2009, Sudheer, P. K. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach, Water Resources Management, 20, 77–90. Nguyen, T. T., Kawamura, A., Tong, T. N., Nakagawa, N., Amaguchi, H. and Jr, R. G., 2015. Clustering spation-seasonal hydrigeochemical data using self-organizing maps for groundwater quality assessment in Red River Delta, Vietnam, Journal of Hydrology, 552, 661-673. Nourani, V., Alami, M.T., Aminfar, M.H.,2009. Combined neural - wavelet model for prediction of Ligvanchayi watershed precipitation, Engineering Applications of Artificial Intelligence, 22, 466 - 472. Nourani, V., Hosseini Baghanam, A., Adamowski, J., Gebremichael, M., 2013. Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling, Journal of Hydrology, 476, 228–243. Nourani, V., Hosseini Baghanam, A., Daneshvar Vousoughi, F., Alami, M., T., 2012. Classification of Groundwater Level Data Using SOM to Develop ANN-Based Forecasting Model, International Journal of Soft Computing and Engineering, 2, 2231-2307. Nourani, V., Taghi Alami, M., Daneshvar Vousoughi, F., 2015. Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling, Journal of Hydrology, 524, 255–269. Suryanarayana, Ch., Sudheer, Ch., Vazeer Mahammood., Panigrahi, B.K., 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India, Neurocomputing, 145, 324-335. Wang, L. and Zhao, W., 2001. Forecasting groundwater level based on WNM with GA. Journal of Computational Information Systems, 7(1), 160-167. Wang, W. and Ding, S., 2003. Wavelet network model and its application to the predication of hydrology, Nature and Science, 1(1), 67-71. Warren Liao, T., 2005. Clustering streamflow time series for regional classification, Journal of Hydrology, 407, 73-80. Wasserman, P.D., 1989. Neural computing: Theory and practice; Van Nostard Rehinold, New York, 230. | ||
آمار تعداد مشاهده مقاله: 682 تعداد دریافت فایل اصل مقاله: 427 |