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Abstract In this article, we present a wavelet method for solving stochastic Volterra integral

equations based on Haar wavelets. First, we approximate all functions involved in
the problem by Haar Wavelets then, by substituting the obtained approximations in

the problem, using the Itô integral formula and collocating at points then, the main

problem converts to a system of linear or nonlinear equation which can be solved by
some numerical methods like Newton’s or Broyden’s methods. The capability of the

simulation of Brownian motion with Schauder functions which are the integration of

Haar functions enables us to find some reasonable approximate solutions. Two test
examples and the application of the presented method for the general stock model

are considered to demonstrate the efficiency, high accuracy and the simplicity of the

presented method.
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1. Introduction

Linear, nonlinear Volterra integral equations and integro-differential equations have
an important role in theoretical physics and other disciplines. Several numerical ap-
proaches have been suggested for solving these equations, one can find an overview
in the monograph. Beginning from 1991 onwards, some numerical methods based on
wavelet theory has been applied for solving integral equations. A short investigation
on these papers can be found in [12]. The solutions by these methods are often quite
intricate and the merits of the wavelet method get lost, therefore, some researchers
tried to find a simplified version of these methods. One way to do this, is to make
use of the Haar wavelets, the most simple wavelets. An overview of the using of Haar
wavelet method for solving linear integral equations related to a different and nonlin-
ear Fredholm integral equations can be found in [12] and [13] respectively. Operational
matrix of integration based on Haar wavelets and its application to analyse lumped
and distributed-parameters dynamic systems established and formulated in [6]. For
some other kind of wavelets such as Legendre multi-wavelets and their application
one can refer to [1, 2, 8, 12, 13].
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Many problems in finance, mechanics, biology, medical, social sciences etc can be
modeled by stochastic integral equations. The application of the stochastic integral
equations for the modeling of such problems makes the study of these problems very
useful and there is an increasing demand for studying the behavior of a number of
sophisticated dynamical systems in physical, medical and social sciences, as well as
in engineering and finance. The mentioned systems are usually dependent on a noise
source, such as Gaussian white noise. For this reason, the modeling of such systems
mostly requires the use of various stochastic functional equations. For stochastic
differential equation case one can refer to [9, 10, 11, 14, 15, 16]. Some applications of
stochastic Volterra and Volterra-Fredholm integral equations and stochastic integro-
differential equations can be found in [7, 24, 25]. Finding an approximate solution for
such problems by using a numerical method is so important because many cases of
these problems cannot be solved analytically [7, 9, 10, 11, 14, 15, 16, 24, 25].

Haar wavelet operational matrix method is utilized for fractional order nonlinear
oscillation equations by Saeed et. al [18]. They obtained the solutions of fractional
order force-free and forced Duffing-Van der Pol oscillator and higher order fractional
Duffing equation on large intervals. The combination of signal denoising technology
and Hankel transforms algorithm which were both based on Haar wavelet decom-
position is proposed in [23]. Zedan et. al [22] proposed a numerical solution based
on Haar wavelet method for Fredholm integral equations and the system of Volterra
integral equations.

Wavelet constitutes a family of functions constructed from dilation and translation
of a single function called the mother wavelet. When the dilation parameter a and the
translation parameter b vary continuously, we have the following family of continuous
wavelets as [5],

Ψa,b(t) = |a|−1
Ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0,

where Ψ is the mother wavelet.
Let α > 1, β > 0 and l, and k are positive integers and restrict the parameters a

and b to the discrete values as a = α−k, b = lβα−k, so the following discrete wavelets
are obtained

Ψl,k(t) = |a|
k
2 Ψ

(
αkt− lβ

)
,

which form a wavelet basis for L2(R). For the case, α = 2 and β = 1 then Ψl,k(t)
forms an orthonormal basis [5].

2. Haar wavelet and function approximation

The Haar wavelet family is

ψn(s) =


1, k

2j ≤ s < 2k+1
2j+1 ,

−1, 2k+1
2j+1 ≤ s < k+1

2j ,

0, elsewhere,

(2.1)
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Table 1. The calculation of indices n, j,m and k for J = 2.

J = 3, 2M = 2J+1 = 8
n = 1 · · · 2M 1 2 3 4 5 6 7 8
j = blog2(n− 1)c - 0 1 1 2 2 2 2
m = 2j - 1 2 2 4 4 4 4
k = n−m− 1 - 0 0 1 0 1 2 3

the integer m = 2j , j = 0, 1, ..., J indicates the level of the wavelet; k = 0, 1, ...,m− 1
is the translation parameter, the integer J determines the maximal level of resolution
and the index n is calculated by the formula n = m + k + 1. The minimal value is
n = 2 (then m = 1, k = 0)and the maximal value is n = 2M where M = 2J . The
index n = 1 corresponds to the scaling function

ψ1(s) =

{
1, 0 ≤ s < 1,
0, elsewhere.

(2.2)

It easy to see from what we have defined the indices through this section that for a
fixed positive integer n ≥ 2, we have j = blog2(n − 1)c, m = 2j and k = n −m − 1.
As an example, when J = 3 remaining indices are listed in Table 1.
The function ψ2(s) is called the mother wavelet, and all the other Haar Wavelets
family except the scaling function are obtained from the mother wavelets by the
operations of dilation and translation. This family of function are orthogonal to each
other, so any function f(s) which is square integrable in (0, 1) can be expressed as an
infinite sum of Haar Wavelets as follow

f(s) =

∞∑
n=1

fnψn(s). (2.3)

It is not difficult to see that the series (2.3) terminates at finite term if f(s) is piecewise
constant and the jumps are at points with a finite binary representation. In other
cases, the truncation of the above series is given as an approximation of the function
f(s) for piecewise constant during each subinterval. The orthogonal property of Haar
Wavelet family leads us to find the values of fn, n = 1, 2, · · · as

f1 =

∫ 1

0

f(s)ψ1(s)ds,

fn = 2j
∫ 1

0

f(s)ψn(s)ds, n = 2 · · · 2M, j = blog2(n− 1)c. (2.4)

Imran Aziz [3] introduced a new algorithm to approximate the Haar wavelet coeffi-
cients. To do this, consider the following collocation points

sp =
p− 0.5

2M
, p = 1, 2, · · · , 2M. (2.5)



CMDE Vol. 5, No. 2, 2017, pp. 170-188 173

Let f(s) be a square integrable function which has been approximated by Haar
wavelets as follow

f(s) ' f̂2M (s) =

2M∑
i=1

f̂i,2Mψi(s), (2.6)

substituting the collocation points (2.5) into (2.6) and supposing f = f̂2M at the
collocation points, we get the following linear system of equations

f(sp) = f̂2M (sp) =

2M∑
i=1

f̂i,2Mψi(sp), (p = 1, 2, · · · , 2M), (2.7)

which is a 2M × 2M linear system of equations. The following theorem is used to

find the solution of this system for the unknown coefficients f̂i,2M . We will show that

f̂i,2M , i = 1, · · · , 2M are the midpoint quadrature weights.

Theorem 2.1. The solution of system (2.7) is given as follows

f̂1,2M =
1

2M

2M∑
j=1

f(sj), (2.8)

f̂i,2M =
1

ρi

 βi∑
p=αi

f(sp)−
γi∑

p=βi+1

f(sp)

 , (2.9)

i = 2, 3, · · · , 2M,

where

αi = ρi(σi − 1) + 1,

βi = ρi(σi − 1) +
ρi
2
,

γi = ρiσi,

ρi =
2M

τi
,

σi = i− τi,
τi = 2blog2(i−1)c.

Proof. See [3] and [21]. �

Now, consider a square integrable function f(s, t) of two variables s and t. Using
the Haar wavelet basis, this function can be approximated as follows

f̂2M (s, t) =

2M∑
i=1

f̂i,2M (t)ψi(s), (2.10)

with a similar argument to the equation (2.6) and the collocation points given in (2.5),
we have the following system of 2M × 2M linear equations

f(sp, t) =

2M∑
i=1

f̂i,2M (t)ψi(sp), p = 1, 2, · · · , 2M. (2.11)
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The following corollary renders an algorithm for finding the unknown coefficients

f̂i,2M (t).

Corollary 2.2. The solution of the system (2.11) is given as follows

f̂1,2M (t) =
1

2M

2M∑
j=1

f(sj , t), (2.12)

f̂i,2M (t) =
1

ρi

 βi∑
p=αi

f(sp, t)−
γi∑

p=βi+1

f(sp, t)

 ,

i = 2, 3, · · · , 2M, (2.13)

where τi, σi, ρi, γi, βi and αi are defined in theorem (2.1).

Proof. See [20]. �

Lemma 2.3. Let f ∈ C2[0, 1], ‖f ′′‖∞ ≤ M, {f̂n,2M}M be the sequence defined in

(2.8) and (2.9) and fn be the Haar wavelet coefficient defined in (2.4) then lim
M→∞

f̂n,2M =

fn, in particular
∣∣∣f̂1,2M − f1

∣∣∣ ≤ M
96M2 and

∣∣∣f̂n,2M − fn∣∣∣ ≤ M
192M2 , n ≥ 2.

Proof. For the case n = 1 we have∣∣∣f̂1,2M − f1

∣∣∣ =

∣∣∣∣∣∣ 1

2M

2M∑
j=1

f(sj)−
∫ 1

0

f(t)ψ1(t)dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ 1

0

f(t)dt− 1

2M

2M∑
j=1

f(sj)

∣∣∣∣∣∣ ≤ M
96M2

, (2.14)

the last inequality holds due to the error-bound composite midpoint rule of the nu-
merical integration.

Now, let n ≥ 2 be a positive integer number. Simply put, in the rest of the article
we put εn = k

2j , ζn = 2k+1
2j+1 and ηn = k+1

2j , where j and k are the integer number
regarding n as shown in Table 1.∣∣∣f̂n,2M − fn∣∣∣ =∣∣∣∣∣ 1

ρn

(
βn∑

p=αn

f(sp)−
γn∑

p=βn+1

f(sp)

)
− 2j

∫ 1

0
f(t)ψn(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣ 1
ρn

βn∑
p=αn

f(sp)− 2j
∫ ζn
εn
f(t)dt

∣∣∣∣∣
+

∣∣∣∣∣ 1
ρn

γn∑
p=βn+1

f(sp)− 2j
∫ ηn
ζn

f(t)dt

∣∣∣∣∣ ,

(2.15)
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with some elementary calculations, we have



αn = 2Mk
2j + 1,

βn = 2Mk
2j + M

2j ,

γn = 2Mk
2j + 2M

2j ,

ρn = 2M
2j ,

(2.16)

and



βn − αn + 1 = M
2j ,

γn − (βn + 1) + 1 = M
2j ,

sp = εn + 1
4M , p = αn,

sp = ζn − 1
4M , p = βn,

sp = ζn + 1
4M , p = βn + 1,

sp = ηn − 1
4M , p = γn,

(2.17)

by using the equations (2.16), (2.17) and the composite midpoint rule, we obtain∣∣∣∣∣ 1ρn
βn∑

p=αn

f(sp)− 2j
∫ ζn

εn

f(t)dt

∣∣∣∣∣ ≤ 2j
(ζn − εn)3

24
(
M
2j

)2
=

M
192M2

, (2.18)

and similarly ∣∣∣∣∣∣ 1ρn
γn∑

p=βn+1

f(sp)− 2j
∫ ηn

ζn

f(t)dt

∣∣∣∣∣∣ ≤ 2j
(ηn − ζn)3

24
(
M
2j

)2
=

M
192M2

. (2.19)

By considering equations (2.14), (2.18) and (2.19), we get

lim
M→∞

f̂n,2M = fn.

�

Theorem 2.4. Let f ∈ C2[0, 1], ‖f ′′‖∞ ≤M then lim
M→∞

∥∥∥f − f̂2M

∥∥∥
2

= 0.
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Proof. Haar wavelet family is dense in L2[0, 1) which means

lim
M→∞

∥∥∥∥∥f −
2M∑
n=1

fnψn

∥∥∥∥∥
2

= 0, (2.20)

further ∥∥∥f − f̂2M

∥∥∥
2
≤

∥∥∥∥∥f −
2M∑
n=1

fnψn +

2M∑
n=1

fnψn − f̂2M

∥∥∥∥∥
2

≤

∥∥∥∥∥f −
2M∑
n=1

fnψn

∥∥∥∥∥
2

+

∥∥∥∥∥
2M∑
n=1

fnψn −
2M∑
n=1

f̂n,2Mψn

∥∥∥∥∥
2

≤

∥∥∥∥∥f −
2M∑
n=1

fnψn

∥∥∥∥∥
2

+

∥∥∥∥∥
2M∑
n=1

(
fn − f̂n,2M

)
ψn

∥∥∥∥∥
2

≤

∥∥∥∥∥f −
2M∑
n=1

fnψn

∥∥∥∥∥
2

+
M

48M
, (2.21)

by using equations (2.20) and (2.21), we can get the desire result. �

In the next theorem, we will extend the above idea for a bivariate function. Let
f(s, t) be a square integrable function, by using the Haar wavelet basis, we have

f(s, t) =

∞∑
n=1

∞∑
k=1

ψn(s)fn,kψk(t),

where

fn,k = 2jn+jk

∫ 1

0

∫ 1

0

f(s, t)ψn(s)ψk(t)dsdt, (2.22)

jn = blog2(n− 1)c ,
jk = blog2(k − 1)c .

On the other hand, we can approximate this function in another way by equation
(2.10)

f(s, t) '
2M∑
k=1

f̂n,2M (t)ψn(s),

where f̂n,2M (t), n = 1, 2, · · · , 2M are defined in equations (2.12) and (2.13). Each

function f̂n,2M (t) also can be approximated as follows

f̂n,2M (t) '
2M∑
k=1

f̂n,k,2Mψk(t),
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where the coefficients f̂n,k,2M are calculated by equations (2.8) and (2.9), so

f(s, t) '
2M∑
k=1

2M∑
k=1

ψn(s)f̂n,k,2Mψk(t),

under some assumptions and the following collocation points, we will show

lim
M→∞

f̂n,k,2M = fn,k,

tq =
q − 0.5

2M
, q = 1, 2, · · · , 2M. (2.23)

Lemma 2.5. Let Ω = [0, 1]2, f ∈ C2(Ω), I(f) :=
∫ 1

0

∫ 1

0
f(s, t)dsdt and Q2M (f) :=

1
4M2

2M∑
n=1

2M∑
k=1

f(sk, tn) where sk and tk are defined in (2.5) and (2.23), then

|I(f)−Q2M (f)| ≤ 1

96M2

(
max

(s,t)∈Ω

∣∣∣∣∂2f

∂s2

∣∣∣∣+ max
(s,t)∈Ω

∣∣∣∣∂2f

∂t2
|
)
.

Proof. In a general case, let Ω = [a, b] × [c, d] and f(s, t) : Ω −→ R be a square
integrable function. Suppose wj and sj , j = 1, 2, · · · ,m are the weights and nodes
regarding one dimension numerical integral in s direction and w′i and ti, i = 1, 2, · · · , n
are weights and nodes regarding one dimension numerical integral in t direction. Let

F (s) =
∫ d
c
f(s, t)dt, we have

I(f) :=

∫ b

a

∫ d

c

f(s, t)dtds =

∫ b

a

F (s)ds

=

m∑
j=1

F (sj)wj + Es(F (s))

=

m∑
j=1

[
n∑
i=1

f(sj , ti)w
′
i + Et(f(sj , t))

]
+ Es(F (s))

=
m∑
j=1

n∑
i=1

f(sj , ti)w
′
iwj +

m∑
j=1

wjEt(f(sj , t)) + Es(F (s))

= Qm,n(f) + Em,n(f),

where, Es and Et are the errors of one dimension numerical integrations in direction
s and t respectively and also

Qm,n(f) :=

m∑
j=1

n∑
i=1

f(sj , ti)w
′
iwj ,

Em,n(f) :=

m∑
j=1

wjEt(f(sj , t)) + Es(F (s)),
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are the double numerical integration formula and the error terms. Suppose that the
one dimension numerical integration, we have

|Et(f(., t))| ≤ Ēt, |Es(F (s))| ≤ Ēs,

so

|I(f)−Qm,n(f)| ≤WĒt + Ēs, (2.24)

where W =
m∑
j=1

|wj |.

Now, in our special case, we use the midpoint rule (Q2M (f) = Qn,m(f)) where a =
c = 0, b = d = 1, m = n = 2M , wj = w′i = 1

2M , hs = ht = 1
2M where hs and ht are

the distance between two subsequent points in direction s and t respectively. Using
the assumption f ∈ C2

Ω, it is clear that

Ēs =
1

96M2
max

(s,t)∈Ω

∣∣∣∣∂2f

∂s2

∣∣∣∣ ,
Ēt =

1

96M2
max

(s,t)∈Ω

∣∣∣∣∂2f

∂t2

∣∣∣∣ .
and W =

m∑
j=1

|wj | = 1. Substituting the obtained results in (2.24) will complete the

proof. �

Theorem 2.6. Under the above assumptions, including the assumption that f(s, t) ∈
C2

Ω, where Ω = [0, 1]2. Suppose max
(s,t)∈Ω

|∂
2f
∂s2 | ≤ M1, max

(s,t)∈Ω
|∂

2f
∂t2 | ≤ M2, then for each

k, n = 1, 2, · · · , 2M we have lim
M→∞

f̂n,k,2M = fn,k, in particular

|f̂n,k,2M − fn,k| ≤
1

96M2
(M1 +M2).

Proof. It is clear to see

f̂1,1,2M =
1

2M

2M∑
j=1

f̂1,2M (tj) =
1

4M2

2M∑
j=1

2M∑
i=1

f(si, tj) = Q2M (f)

= Q2M (fψ1) = Q2M (fψ1ψ1), (2.25)

f̂1,k,2M
k=2,3,··· ,2M

=
1

ρk

 βk∑
p=αk

f̂1,2M (tp)−
γk∑

p=βk+1

f̂1,2M (tp)


=

1

2Mρk

2M∑
n=1

 βk∑
p=αk

f(sn, tp)−
γk∑

p=βk+1

f(sn, tp)


= 2jkQ2M (fψk) = 2jkQ2M (fψkψ1). (2.26)
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Similarly, we have

f̂n,1,2M
n=2,3,··· ,2M

= 2jnQ2M (fψn) = 2jnQ2M (fψ1ψn), (2.27)

and

f̂n,k,2M
n,k=2,3,··· ,2M

= 2jn+jkQ2M (fψnψk). (2.28)

By using equation (2.22), equations (2.25)-(2.28) and the lemma (2.5), we have

lim
M→∞

f̂n,k,2M = fn,k, n, k = 1, 2, · · · , 2M,

and

|f̂n,k,2M − fn,k| ≤
1

96M2
(M1 +M2).

�

Corollary 2.7. With the same argument discussed in (2.4), let Ω = [0, 1]2,

f(s, t) ∈ C2
Ω, max

(s,t)∈Ω
|∂

2f
∂s2 | ≤ M1, max

(s,t)∈Ω
|∂

2k
∂t2 | ≤ M2 and

f̂2M (s, t) =
2M∑
k=1

2M∑
k=1

ψn(s)f̂n,k,2Mψk(t) then lim
M→∞

∥∥∥f − f̂2M

∥∥∥
2

= 0.

3. Simulation of Brownian motion via series representations

Definition 3.1. Let (Ω,F ,P) be a probability space and let {Ft} be a filtration,
B(t) = Bt = Bt(ω) is a one-dimensional Brownian motion with respect to {Ft} and
the probability measure P, started at 0, if [4]

(1) Bt is Ft measurable for each t ≥ 0.
(2) B0 = 0, a.s.
(3) Bt−Bs is a normal random variable with mean 0 and variance t−s whenever

s < t.
(4) Bt −Bs is independent of Fs whenever s < t.
(5) Bt has continuous paths.

Since the Brownian sample paths are continuous functions, they can be expanded
in a Fourier series. However, the paths are random functions: for different ω different
functions are obtained. This means that the coefficients of this Fourier series are
random variables, and since the process is Gaussian, they must be Gaussian as well.
The representation of Brownian motion on the interval [0, 2π] is called Paley-Wiener
representation, which is formulated as follows [17]

Bt(ω) = Z0(ω)
t√
2π

+
2√
π

∞∑
n=1

Zn(ω)
sin(nt2 )

n
,

t ∈ [0, 2π],

where (Zn, n ≥ 0) is a sequence of iid (independent and identically distributed)N(0, 1)
random variables.
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Another such well-known representation is due to Lévy representation, since the
sine functions are replaced by certain polygonal functions (the Schauder function).
Let’s define the Haar functions Hn on [0, 1] as follows

H1(t) = 1,

H2m+1(t) =


2

m
2 , if t ∈

[
1− 2

2m+1 , 1− 1
2m+1

)
,

−2
m
2 , if t ∈

[
1− 1

2m+1 , 1
)
,

0, elsewhere,

H2m+k(t) =


2

m
2 , if t ∈

[
k−1
2m , 2k−1

2m+1

)
,

−2
m
2 , if t ∈

[
2k−1
2m+1 ,

k
2m

)
,

0, elsewhere,

k = 1, . . . , 2m − 1; m = 0, 1, . . . .

From these functions, define the system of the Schauder functions on [0, 1] by inte-
grating the Haar functions

H̃n(t) =

∫ t

0

Hn(s)ds, n = 1, 2, . . . .

Figure 3 shows the graphs of Hn and H̃n for the first n. A series representation for

Figure 1. The graphs of Hn and H̃n for the first n.
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Brownian sample path on [0, 1] is then given by

Bt(ω) =

∞∑
n=1

Zn(ω)H̃n(t) t ∈ [0, 1], (3.1)

where the convergence of this series is uniform for t ∈ [0, 1] and Zn(ω)s are realizations
of an iid N(0, 1) sequence (Zn). Haar wavelet approximation of the involved functions
in the problem, simulation of the Brownian motion by Haar functions and the simi-
larities between the Haar wavelet family and Haar functions enable us to reduce the
computational costs in solution procedure.

4. Stochastic integration operational matrix

In this section, we have applied the Itô integral for functions ψn(s) as follows

∫ t

0

ψn(s)dB(s) =



0,

B(t)−B( k2j ),

2B( 2k+1
2j )−B( k2j )−B(t),

2B( 2k+1
2j+1 )−B( k2j )−B(k+1

2j ),

(4.1)

for

0 ≤ t < k

2j
,

k

2j
≤ t < 2k + 1

2j+1
,

2k + 1

2j+1
≤ t < k + 1

2j
,

k + 1

2j
≤ t < 1,

respectively.
By substituting tq = q−0.5

2M , q = 1, 2, · · · , 2M in (4.1) we have

ψBn (tq) =

∫ tq

0

ψn(s)dB(s)

=



0, 0 ≤ tq < k
2j ,

B(tq)−B( k2j ), k
2j ≤ tq < 2k+1

2j+1 ,

2B( 2k+1
2j )−B( k2j )−B(tq),

2k+1
2j+1 ≤ tq < k+1

2j ,

2B( 2k+1
2j+1 )−B( k2j )−B(k+1

2j ), k+1
2j ≤ tq < 1,

(4.2)
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where it can be written in a matrix form, so called stochastic integration operational
matrix

PBHaar =
[
ψBi (tq)

]
2M×2M

, i, q = 1, 2, · · · , 2M.

5. Solution procedure

In this section, we will describe the numerical method for stochastic Volterra inte-
gral equations. We consider the following stochastic Volterra integral equation

X(t) = f(t) +

∫ t

0

k1(s, t,X(s))ds+

∫ t

0

k2(s, t,X(s))dB(s), t ∈ [0, 1), (5.1)

where X, f, k1 and k2 are the stochastic processes defined on the probability space

(Ω,F,P), andX is unknown. Also, B(t) is a Brownian motion and
∫ t

0
k2(s, t,X(s))dB(s)

is the Itô integral. Using equation (2.11), we approximate the functions k1(s, t,X(s))
and k2(s, t,X(s)) as follow

kl(s, t,X(s)) =

2M∑
i=1

k̂l,i(t)ψi(s), l = 1, 2,

where

k̂l,1(t) =
1

2M

2M∑
j=1

kl(sj , t,X(sj)), l = 1, 2, (5.2)

and

k̂l,i(t) =
1

ρi

 βi∑
p=αi

kl(sp, t,X(sp))−
γi∑

p=βi+1

kl(sp, t,X(sp))


i = 2, 3, · · · , 2M, l = 1, 2, (5.3)

by substituting the above approximations in equation (5.1), we obtain the following
equation

X(t) = f(t) +

∫ t

0

2M∑
i=1

k̂1,i(t)ψi(s)ds+

∫ t

0

2M∑
i=1

k̂2,i(t)ψi(s)dB(s), t ∈ [0, 1).
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After simplifying and substituting the collocation points (2.23), we have

X(tq) = f(tq) +
1

2M

2M∑
p=1

k1(sp, tq, X(sp))ψ1(tq)

+
1

2M

2M∑
p=1

k2(sp, tq, X(sp))ψ
B
1 (tq)

+

2M∑
i=2

1

ρi

(
βi∑

p=αi

k1(sp, tq, X(sp))

−
γi∑

p=βi+1

k1(sp, t,X(sp))

ψi(tq)

+

2M∑
i=2

1

ρi

(
βi∑

p=αi

k2(sp, tq, X(sp))

−
γi∑

p=βi+1

k2(sp, t,X(sp))

ψBi (tq). (5.4)

Having Solved the above system of equations and used the equations (2.6)-(2.9), we
can find the Haar wavelet approximation for the stochastic process X(t) as follows

X(s) ' X̂2M =

2M∑
i=1

X̂i,2Mψi(s). (5.5)

6. Numerical results

In order to demonstrate the method presented in the previous section, the following
examples are considered.

Example 1. Consider the following linear stochastic Volterra integral equation,

X(t) = 1 +

∫ t

0

s2X(s)ds+

∫ t

0

sX(s)dB(s), s, t ∈ [0, 1). (6.1)

with the exact solution X(t) = e
t3

6 +
∫ t
0
sdB(s) where X(t) is an unknown stochastic

process defined on the probability space (Ω, z,P), and B(t) is a Brownian motion
process.The curves in Figure 1 represents a trajectory of the approximate solution
computed by the presented method with a trajectory of exact solution.

Example 2. Consider the following linear stochastic Volterra integral equation,

X(t) =
1

12
+

∫ t

0

cos(s)X(s)ds+

∫ t

0

sin(s)X(s)dB(s), s, t ∈ [0, 1), (6.2)



184 S. VAHDATI

Figure 2. Simulation of Brownian motion are shown in graphs (a)
with J = 6 and (c) with J = 7. Graphs (b) and (d) show the
proposed analytical approximate and exact solutions of equation (6.1)
corresponding to the simulation of Brownian motion shown in (b) and
(d) respectively.
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with the exact solution X(t) = 1
12e

−t
4 +sin(t)+

sin(2t)
8 +

∫ t
0

sin(s)dB(s) where X(t) is an
unknown stochastic process defined on the probability space (Ω, z, P ), and B(t) is
a Brownian motion process.The curves in Figure 2 represents a trajectory of the
approximate solution computed by the presented method with a trajectory of exact
solution.

6.1. Application to general stock model. The market consists of a riskless cash
bond, {A(t)}t≥0, and a single risky asset with price process {S(t)}t≥0 governed by{

dAt = rtAtdt, A0 = 1,
dSt = µtStdt + σtStdBt,

(6.3)

where {W (t)}t≥0 is a P-Brownian motion generating the filtration {F}t≥0 and {r(t)}t≥0,
{µ(t)}t≥0 and {σ(t)}t≥0 are {F}t≥0-adapted processes. Evidently, a solution to these
equations should take the form

At = exp

(∫ t

0

rudu

)
,

St = S0exp

(∫ t

0

(
µu −

1

2
σ2
u

)
du+

∫ t

0

σudBu

)
.

(6.4)



CMDE Vol. 5, No. 2, 2017, pp. 170-188 185

Figure 3. Simulation of Brownian motion are shown in graphs (a)
with J = 6 and (c) with J = 7. Graphs (b) and (d) show the
proposed analytical approximate and exact solutions of equation (6.2)
corresponding to the simulation of Brownian motion shown in (b) and
(d) respectively.
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For example, consider the following general stock model,
dAu = sin(u)Audu, B0 = 1, u ∈ [0, 1),

St =
1

10
+

∫ t

0

ln(1 + u)Sudu+

∫ t

0

uSudBu,

u, t ∈ [0, 1),

(6.5)

with the exact solution At = e1−cos(t) and St = 1
10e

(1+t) ln(1+t)−t− t3

6 +
∫ t
0
udBu , for

0 ≤ t < 1. Figure 4 shows two trajectory of the analytical approximate solution
computed by the presented method with the trajectory of the exact solutions for
levels J = 6 and J = 7.

Theorem 6.1. Let Wt, t ≥ 0 be a Brownian motion, and let ∆(t) be a nonrandom

function of time. Define I(t) =
∫ t

0
∆(u)dBu. For t ≥ 0, the random variable I(t) is

normally distributed with expected value zero and variance
∫ t

0
∆2(u)du.

Proof. See [19]. �

Corollary 6.2. Theorem (6.1) implies that the random variables lnX(t) in exam-
ples (6.1) and (6.2) and lnSt in example (6.5) are normally distributed. Therefore,
confidence intervals for these random variables and thereafter for X(t) and St can be
obtained. As an special case, we have

lnSt ∼ N
(

ln
1

10
+ (1 + t) ln(1 + t)− t− t3

6
,
t2

2

)
.
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Figure 4. Simulation of Brownian motion are shown in graphs (a)
with J = 6 and (c) with J = 7. Graphs (b) and (d) show the
proposed analytical approximate and exact solutions of equation (6.5)
corresponding to the simulation of Brownian motion shown in (b) and
(d) respectively.
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Figure 5 shows a 95% confidence region for the stock price process, in Figure 5-(a)

100 sample paths for the exact solution St = 1
10e

(1+t) ln(1+t)−t− t3

6 +
∫ t
0
udBu with the

upper and lower limits corresponding to the 95% confidence region is shown where,
Figure 5-(b) shows the approximate sample paths corresponding to 100 sample paths
of the exact solution and the 95% confidence region.

7. Conclusion

Mail goal of the presented work has been to construct an approximation to the solu-
tion of stochastic Volterra integral equations. In the above discussion, the collocation
points with Haar wavelets, which have the property of orthogonality, is employed to
achieve this goal. Using the new method for finding the Haar wavelet coefficients
enables us to reduce the computation costs. There is a good agreement between ob-
tained results and exact values that demonstrate the validity of the present method
for this type of problems and gives the method a wider applicability. The method
also applied to general stock model and the obtained results showed the ability and
the accuracy of the method.
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Figure 5. The 95% confidence region for the general stock model;
Figure (a) shows the sample paths obtained from the exact solution
where Figure (b) shows the sample paths obtained from the proposed
method.
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