تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,490,560 |
تعداد دریافت فایل اصل مقاله | 15,217,851 |
تأثیر نانو ذرات لیپیدی جامد حاوی اسانس آویشن شیرازی (Zataria multiflora) بر بازدارندگی از رشد عوامل پوسیدگی قارچی Aspergillus niger ، Aspergillus ochraceus و flavus Aspergillus | ||
پژوهش های کاربردی در گیاهپزشکی | ||
مقاله 13، دوره 5، شماره 2، مهر 1395، صفحه 161-174 اصل مقاله (1017.62 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
محبوبه ناصری1؛ حسین آرویی* 2؛ شیوا گل محمدزاده3؛ محمودرضا جعفری4؛ حسین نعمتی5 | ||
1دانش آموخته دکتری علوم باغبانی دانشگاه فردوسی مشهد. | ||
2دانشیار گروه علوم باغبانی و مهندسی فضای سبز دانشکده کشاورزی دانشگاه فردوسی مشهد. | ||
3استادیار گروه علوم باغبانی و مهندسی فضای سبز دانشکده کشاورزی دانشگاه فردوسی مشهد. | ||
4دانشیار مرکز تحقیقات نانوفناوری دانشکده داروسازی دانشگاه علوم پزشکی مشهد. | ||
5استاد مرکز تحقیقات نانوفناوری دانشکده داروسازی دانشگاه علوم پزشکی مشهد. | ||
چکیده | ||
چکیده استفاده از اسانس گیاهان دارویی به منظور کنترل عوامل بیماریزای گیاهی با مشکلاتی مانند ناپایداری، تبخیر و تجزیه در مقابل شرایط محیطی و شیمیایی روبرو است. به منظورمرتفع کردن مشکلات استفاده از اسانس آویشن شیرازی و افزایش کارایی آن در کنترل عوامل بیماریزای قارچی (Aspergillus flavus, Aspergillus nigerوAspergillus ochraceus) از سیستم حامل نانوذارت لیپیدی جامد استفاده شد. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی در سه تکرار به روش اختلاط اسانس و نانوذرات لیپیدی جامد حاوی اسانس با محیط کشت سیبزمینی دکستروز آگار با چهار غلظت 20، 50، 100 و 200 میکرولیتر اسانس بر لیتر محیط کشت بود. نانوذرات لیپیدی جامد حاوی اسانس با استفاده از امواج فراصوت تهیه شد. اندازه نانوذرات لیپیدی جامد حاوی اسانس تهیه شده کمتر از 200 نانومتر، شاخص پراکندگی 483/0، پتانسیل زتا 6/42- میلیولت و شکل نانو ذرات نیز کروی بود. حداقل غلظت بازدارنده برای اسانس به فرم آزاد در گونه A.niger200 میکرولیتر بر لیترو برای گونههای A.ochraceusوA. flavus 300 میکرولیتر بر لیتر بود. همچنین حداقل غلظت بازدارنده برای نانوذرات لیپیدی جامد حاوی اسانس برای تمامی گونههای قارچی 200 میکرولیتر بر لیتر بود. بر اساس این نتایج نانو ذرات لیپیدی جامد حاوی اسانس نسبت به فرم آزاد اسانس باعث افزایش 38 درصدی بازدارندگی بر روی رشد عوامل بیماریزای قارچی مورد آزمایش شدند. این نتایج نشان داد نانوذرات لیپیدی جامد میتواند حامل مناسبی برای اسانس آویشن شیرازی در جهت افزایش کارایی و کنترل عوامل پوسیدگیA. ochraceus، A.flavus وA.nigerباشد. | ||
کلیدواژهها | ||
واژه های کلیدی: نانوذرات لیپیدی جامد؛ حداقل غلظت بازدارنده؛ اسانس؛ گونه های آسپرژیلوس | ||
مراجع | ||
افشاری، ح، م افشاری، غ ر باقری، و ق لایی. 1392. بررسی اثر میدان مغناطیسی ایستا و زمان بر رشد قارچ آسپرژیلوس فلاووس و تولید آفلاتوکسین B1. فصلنامه علمی پژوهشی دانشگاه علوم پزشکی زابل. 5 (4): صفحه های 10 تا 15. بلالی، غ، ا ع مینایی فر، ب شریف نبی، 1386. تنوع زایموگرافی پکتیناز در قارچهایAspergillus flavus و Aspergillus niger. مجله زیست شناسی ایران. (1) 20 : صفحههای 5 تا 14. حسنی ع، جلیلی مرندی ر و قوستا ی، 1388. استفاده از اسانسهای گیاهی برای کنترل بیماری کپک خاکستری (Botrytis cinerea) میوههای گلابی. مجله علوم باغبانی ایران، دوره 40، شماره1. صفحههای 85 تا 94. محمودی، ا، ا ر احمدی و د نادری.1390، بررسی مکانیسم سمیت عصاره آویشن شیرازی (Zatariamultiflora ) بر رشد قارچ Alternaria alternate. ششمین همایش ملی ایده های نو در کشاورزی، 11 و 12 اسفند، دانشگاه آزاد اسلامی خوراسگان. Bacchella R, A.Testoni, and A. Lo Scalzo, 2009. Influence of genetic and environmental factors on chemical profile and antioxidant potential of 84 commercial Strawberry (Fragaria × ananassa Duchesne). Electronical Journal of environmental, Agricultural and Food Chemistry 8 (4): 230-242. Barkai-Golan R, 2004. Postharvest Diseases of Fruits and Vegetables: Development and Control. 1st Edn, ElsevierScienceB.VAmsterdam. Burt S, 2004. Essential oils: their antibacterial properties and potential applications in foods. International Journal of Food Microbiology 94: 223-253. Bunjes H, 2005. Characterization of Solid Lipid Nano- and Microparticles. In: Lipospheres in drug targets and delivery. Edited by Nastruzzi C, pp: 41-66. Florida: CRC press. De Billerbeck VG, Roques CG, Bessiere JM, Fonvieille J, and Dargent R, 2001. Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger.Canadian Journal of Microbiology 47: 9-17. Donsi F, Annunziata M, Sessa M, and Ferrari G, 2011. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. Food Science and Technology 44:1908-1914. Ekambaram P, Abdul Hasan Sathali A, and Priyanka K, 2011. Solid Lipid Nanoparticles: A Review. Scientific Reviews & Chemical Communications Journal 2(1):80-102.Fathi M, Mozafari M. R, and Mohebbi M, 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology 23: 13-27. Gandomi H, Misaghi A, AkhondzadehBasti A, Khosravi A, Bokaei S, Abbasifar A, 2008. Effectsof Zataria multiflora Boiss.essential oil on Aspergillus flavus. Journal of Medicinal Plants7:45–51. Gandomi H, Misaghi A, Akhondzadeh A, Bokaei S, Khosravi A, Abbasifar A, and Jebelli A, 2009. Effect of Zataria multiflora Boiss. essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food Chemical Toxicology 47: 2397–2400. GolmohammadzadehS, Mortezania S, Jaafari MR, 2012. Improved photostability, reduced skin permeation and irritation of isotretinoin by solid lipid nanoparticles. Acta Pharmaceutica 62(4): 547-562. Gomes C, Moreira R.G, 2011. Castell-Perez E. Poly (DL-lactide-coglycolide) (PLGA) Nanoparticles with Entrapped trans-Cinnamaldehyde and Eugenol for Antimicrobial Delivery Applications. Journal Food Science 76: 16-24. Gualbert J, Shahgaldian P, and Coleman AW, 2003. Interactions of amphiphilic calyx arene-based solid lipid nanoparticles with bovine serum albumin. International Journal of Pharmaceutics 257: 69-73. Jores K, Mehnerta W, Drechslerb M, Bunjesc H, Johannd C, and Mäder K, 2004. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. Journal of Controlled Release 9: 217-227.Lai F, Wissing S A, Müller R H, and Fadda A A, 2006. Artemisia arborescens L Essential Oil–Loaded Solid Lipid Nano particles for Potential Agricultural Application: Preparation and Characterization. American Association of Pharmaceutical Scientists 7 (1): 10-18. Lambert RJW, Skandamis PN, Coote PJ, and Nychas GJE, 2001. A study of the minimum concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91: 453-462. Li KK, Yin S-W, Yang X-Q, Tang C-H, and Wei ZH, 2012. Fabrication and Characterization of Novel Antimicrobial Films Derived from Thymol-Loaded Zein–Sodium Caseinate (SC) Nanoparticles. Journal of Agricultural and Food Chemistry 60: 11592-11600. Lertsatitthanakorn P, Taweechaisupapong S, Aromdee C, Khunkitti W, 2008. Antibacterial Activity of citronella oil solid lipid particles in oleogel against Propionibacterium acnes and its chemical stability. International Journal of Essential Oil Therapeutics 2: 167-171. Mader K. and Mehnert W, 2005. Solid lipid nanoparticles-concepts, procedures and physicochemical aspects. In: Lipospheres in drug targets and delivery. Edited by Nastruzzi C, pp: 1-22. Florida: CRC press. Nasseri M, Arouiee H, Golmohammadzadeh S ,Jaafari MR, and Neamati H, 2015. Antifungal effects of Zataria multiflora essential oil on the inhibitory growth of some postharvest pathogenic fungi. Notulae Scientia Biologicae7(4):412-416. Özden Ç, and Bayindirli L , 2002. Effects of combinational use of controlled atmosphere, cold storage and edible coating applications on shelf life and quality attributes of green peppers. Food Research Technology 21:320 – 326. Sao Pedro A, Espirito Santo I, Silva C V, Detoni C, and Albuquerque E, 2013. The use of nanotechnology as an approach for essential oil-based formulations with antimicrobial activity. Microbial Pathogens and Strategies for combating them 1: 293-294. Shafiee A, and Javidnia K, 1997. Composition of essential oil of Zataria multiflora. Plant Medicin 65: 371-372. Shi F, Zhao J, Liu Y, Wang Z, Zhang Y, and Feng N, 2012. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. International Journal of Nanomedicine 7: 2033–2043. Soylu EM, Soylu S, and Kurt S, 2006. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia Journal 161: 119-128.Tajkarim MM, Ibrahim SA, Cliver DO, 2010. Antimicrobial herb and spice compounds in food. Food Control 21: 1199-1218. Teeranachaideekul V, Souto EB, Junyaprasert VB, and Muller RH, 2007 Cetylpalmitate-based NLC for topical delivery of Coenzyme Q10: Development, physicochemical characterization and in-vitro release studies. European Journal of Pharmaceutics and Biopharmaceutics 67: 141–148. Vivek K, Reddy H, and Murthy RS, 2007. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. American Association of Pharmaceutical Scientists 8: 16-24. Wattanasatcha A, Rengpipat S, and Wanichwecharungruang S, 2012. Thymol nanospheres as an effective anti-bacterial agent. International Journal ofPharmaceutics 434: 360-365. Weiss J, Gaysinsky S, Davidson M, and McClements J, 2009. Nanostructured Encapsulation Systems: Food Antimicrobials. Global Issues in Food Science and Technology 24: 425- 479. Wissing SA, and Muller RH, 2002. The influence of the crystallinity of lipid57- nanoparticles on their occlusive properties. International Journal ofPharmaceutics 242: 377-379. Wu Y, Luo Y, and Wang Q, 2012. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquideliquid dispersion method. Food Science and Technology 48:283-290.
| ||
آمار تعداد مشاهده مقاله: 1,473 تعداد دریافت فایل اصل مقاله: 1,679 |