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Abstract In this paper, we introduce a family of fractional-order Chebyshev functions based
on the classical Chebyshev polynomials. We calculate and derive the operational ma-

trix of derivative of fractional order γ in the Caputo sense using the fractional-order
Chebyshev functions. This matrix yields to low computational cost of numerical
solution of fractional order differential equations to the solution of a system of alge-
braic equations. Several numerical examples are given to illustrate the accuracy of

our method. The results obtained, are in full agreement with the analytical solutions
and numerical results presented by some previous works.
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1. Introduction

Fractional calculus, i.e. the theory of derivatives and integrals of fractional (non-
integer) order, have been playing an increasingly important role in scientific and
engineering computations. A history of the development of fractional differential
operators and some applications can be found in [7, 9, 12, 23, 26, 35, 36]. In some
cases, fractional differentials and integrals provide more accurate models of systems
under consideration. The analytic results on existence and uniqueness of solutions to
fractional differential equations (FDEs) have been investigated by many authors [9,
23]. Also analytic solution of some kinds of FDEs was investigated in [20]. Most
FDEs do not have closed form solutions, so approximation and numerical techniques
such as differential transform method [32], finite difference methods [1, 41], variational
iteration method [11, 29], Adomian decomposition method [30], homotopy analysis
method [10, 33], collocation method [18, 38, 40] and other methods [2, 4, 5, 13, 19,
24, 25, 27, 28, 43], must be used.
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Nowadays, a lot of attention has been devoted to construct operational matrix of
fractional derivative for some types of classical orthogonal polynomials. For example,
Darani et. al. in [8] introduced the fractional type of Chebysheve polynomials of the
second kind and used it to numerical solution of some linear fractional differential
equations. Saadatmandi and Dehghan [39] introduced shifted Legendre operational
matrix for fractional derivatives and applied it for numerical solution of FDEs and
fractional linear systems of equations [3]. Also, the Bernstein operational matrix of
fractional derivative has been derived in [37]. Furthermore, Doha et al. [14] introduced
shifted Chebyshev operational matrix for fractional derivatives and the authors in [15]
derived the shifted Jacobi operational matrix of fractional derivatives. Application of
classical orthogonal polynomials for the FDEs implies some difficulties in connection
with the collocation method [18]. Recently, Kayedi-Bardeh et al. [21] introduced
the fractional orthogonal Jacobi functions then they obtained the explicit form of
the fractional derivative operational matrix for these functions. Also very recently,
in [22] a general formulation for the fractional-order Legendre functions (FLFs) is
constructed to obtain the solution of the FDEs. The methods based on operational
matrices are the powerful tools in computational sciences[3, 4, 5, 14, 17, 24, 39]. In
this paper, we introduce a new operational method to solve FDEs. The algorithms in
the present work are somewhat related to the ideas used by Kayedi-Bardeh et al. [21]
and Kazem et al. [22]. First, we construct the fractional order Chebyshev functions
(FCFs) and then derive the operational matrix of fractional order FCFs and apply it
to solve FDEs. The method reduces the FDEs to a system of algebraic equations.

The structure of this paper is arranged in the following way: In Section 2, we
introduce some necessary definitions and mathematical preliminaries of fractional
calculus. In Section 3, the FCFs and their properties are obtained. We make a new
operational matrix for fractional derivative by FCFs in Section 4. Applications of the
operational matrix are given in Section 5 and numerical simulations are reported in
Section 6.

2. Preliminaries and notation

2.1. A short overview on Chebyshev polynomials. The Chebyshev polynomials
of all kinds are widely use in approximation of functions [4, 14, 16, 31]. The well known
Chebyshev polynomials of the first kind of degree n are defined on the interval [−1, 1]
as

Tn(t) = cos(n arccos(t)), (2.1)

and the so-called shifted Chebyshev polynomials by using the simple change of variable
are defined as

T ∗
n(t) = Tn(2t− 1). (2.2)

Then T ∗
n(t) can be obtained with the aid of the following recurrence formula:

T ∗
n+1(t) = (4t− 2)T ∗

n(t)− T ∗
n−1(t), n = 1, 2, ..., (2.3)
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with initial conditions T ∗
0 (t) = 1 and T ∗

1 (t) = 2t− 1. The analytic form of the shifted
Chebyshev polynomials T ∗

n(t) of degree n > 0 is given by

T ∗
n(t) = n

n∑
k=0

(−1)(n−k) (n+ k − 1)!22k

(n− k)!(2k)!
tk, (2.4)

where T ∗
n(0) = (−1)n and T ∗

n(1) = 1. The orthogonality condition is∫ 1

0

T ∗
m(t)T ∗

n(t)w(t) = hnδmn, (2.5)

where w(t) = 1√
t−t2

, hn = bn
2 π, b0 = 2, bn = 1, n ≥ 1 and δmn is the Kronecker

function.
Also, for the shifted Chebyshev polynomials of the first kind we have [31]

AT =


1
2
2t
8t2

...
1
2 (4t)

N

 , (2.6)

where

A = (aij) =


1
2 0 0 · · · 0
1 1 0 · · · 0
3 4 1 · · · 0
...

...
...

. . .
...

1
2

(
2N
N

) (
2N
N−1

) (
2N
N−2

)
· · · 1

 , T =


T ∗
0 (t)

T ∗
1 (t)
...

T ∗
N (t)

 .

Using the above equations, we can write

T = FX, (2.7)

where X = [1, t, t2, · · · , tN ]T and F = A−1E and E = (eij) is the diagonal matrix
with entire ei,i =

1
24

i, (i = 0, 1, · · · , N). Thus, we can calculate each entire of T as

T ∗
i (t) =

i∑
j=0

fijt
j , i = 0, 1, 2, · · · , N.

Remark 2.1. From 2.4 we get

A−1
i,j =

{
(−1)i j = 0,

i(−1)i−j (i+j−1)!22j

(i−j)!(2j)! otherwise

2.2. The fractional derivative in the Caputo sense. Let us start with recalling
the essentials of the fractional calculus. There are various definitions of fractional
integration and differentiation of order γ > 0, and not necessarily equivalent to each
other, (see, e.g. [23, 35]). The Caputo fractional derivative, which is used in this
paper, allows the utilization of initial and boundary conditions involving integer order
derivatives, which have clear physical interpretations.



70 M. A. DARANI AND A. SAADATMANDI

Definition 2.2. Caputo’s definition of the fractional-order derivative is defined as

Dγf(x) =
1

Γ(n− γ)

∫ x

0

f (n)(t)

(x− t)γ+1−n
dt, n− 1 < γ < n, n ∈ N, (2.8)

where γ > 0 is the order of the derivative, Γ(.) is the Gamma function and n =
[γ] + 1, with [γ] denoting the integer part of γ. Recall that for γ ∈ N, the Caputo
differential operator coincides with the usual differential operator of integer order.
Similar to integer-order differentiation, Caputo’s fractional differentiation is a linear
operator:

Dγ(λf(x) + µg(x)) = λDγf(x) + µDγg(x), (2.9)

where λ and µ are constants. Also, for the Caputo’s derivative we have [12],

DγC = 0, (C is a constant),
(2.10)

Dγxα =

{
0, for α ∈ N0 and α < ⌈γ⌉,
Γ(α+1)

Γ(α+1−γ)x
α−γ , for α ∈ N0 and α ≥ ⌈γ⌉ or α /∈ N and α > ⌊γ⌋,

(2.11)

where ⌈γ⌉ and ⌊γ⌋ are the ceiling and floor functions respectively. Also N = {1, 2, ...}
and N0 = {0, 1, 2, ...}. Furthermore we need the generalized Taylor’s formula that
involves Caputo fractional derivatives. This generalization is presented in [34]:

Theorem 2.3. (Generalized Taylor formula) Let Diαf(x) ∈ C(0, 1] for i = 0, 1, · · ·N
and 0 < α ≤ 1. Then

f(x) =
N−1∑
i=0

xiα

Γ(iα+ 1)
Diαf(0+) +Rα

N (x)

where

Rα
N (x) =

xNα

Γ(Nα+ 1)
DNαf(ξx), ξx ∈ (0, x], ∀x ∈ (0, 1],

and Diα =

i times︷ ︸︸ ︷
DαDα · · ·Dα .

3. Fractional-order Chebyshev functions

Following [21, 22], the fractional-order Chebyshev functions (FCFs) can be defined
by introducing the change of variable t = xα and α > 0 on the shifted Chebyshev
polynomials of the first kind. We denote the fractional-order Chebyshev functions
T ∗
i (x

α) as T
α

i (x). From the recurrence relation of the shifted Chebyshev polynomials

(2.3), we find that T
α

i (x) can be obtained with the following recurrence formula:

T
α

i+1(x) = (4xα − 2)T
α

i (x)− T
α

i−1(x), i = 0, 1, 2, ..., (3.1)
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where T
α

0 (x) = 1 and T
α

1 (x) = 2xα − 1. Also, using Eq. (2.4), the analytic form of

T
α

i (x) of degree iα given by

T
α

i (x) = i
i∑

k=0

(−1)(i−k) (i+ k − 1)!22k

(i− k)!(2k)!
xkα. (3.2)

In the following we state some properties of the FCFs.

Lemma 3.1. T
α

i (x)s are orthogonal over the interval (0, 1) with respect to the weight
function wα(x) =

1
x
√
x−α−1

and we have:∫ 1

0

T
α

i (x)T
α

j (x)wα(x)dx =
1

α
hiδij ,

Proof. Using Eq. (2.5) and taking t = xα, we get∫ 1

0

T ∗
i (x

α)T ∗
j (x

α)w(xα)αxα−1dx =

∫ 1

0

T
α

i (x)T
α

j (x)
αxα−1

√
xα − x2α

dx

=

∫ 1

0

T
α

i (x)T
α

j (x)
αxα−1

xα
√
x−α − 1

dx

= α

∫ 1

0

T
α

i (x)T
α

j (x)
1

x
√
x−α − 1

dx

= hiδij ,

this leads to the desired result. �

It is important to note that, both of x and
√
x−α − 1 are positive, so wα(x) =

1
x
√
x−α−1

is well defined.

Proposition 3.2. The fractional-order Chebysev function T
α

i (t), has precisely i zeros
in the form

tj =

(
1

2
+

1

2
cos

(
(2j − 1)π

2i

)) 1
α

, j = 1, 2, · · · , i. (3.3)

Proof. The shifted Chebyshev polynomial T ∗
i (x) has precisely i zeros

xj =
1

2
+

1

2
cos

(
(2j − 1)π

2i

)
, j = 1, 2, · · · , i. (3.4)

Thus T ∗
i (x) can be written as

T ∗
i (x) = (x− x1)(x− x2) · · · (x− xi).

Taking the change of variable x = tα we obtain

T
α

i (t) = (tα − x1)(t
α − x2) · · · (tα − xi).

Hence, the zeros of T
α

i (t) are

tj = (xj)
1
α , j = 1, 2, · · · , i.

�
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Lemma 3.3. T
α

i (x) is the i-th eigenfunction of the singular Sturm-Liouville problem(
x
√
x−α − 1

(
T

α

i (x)
)′)′

+ (iα)2
1

x
√
x−α − 1

T
α

i (x) = 0. (3.5)

Proof. According to definition of the T
α

i , we have

T
α

i (θ) = cos(iθ), θ = arccos(2xα − 1), x ∈ [0, 1].

Therefore T
α

i hold in the following Sturm-Liouville differential equation

d2

dθ2
T

α

i (θ) + i2T
α

i (θ) = 0, i = 0, 1, . . . .

Using differential chain rule, we get(
T

α

i

)′′
(
dx

dθ

)2

+
(
T

α

i

)′
(
dx

dθ

)
d

dx

(
dx

dθ

)
+ i2T

α

i = 0. (3.6)

But

dx

dθ
= −x

α

√
x−α − 1, (3.7)

Employing Eq. (3.7), Eq. (3.6) can be written as

x2 (1− xα)
(
T

α

i

)
′′ + x

(
2− α

2
− xα

)(
T

α

i

)′
+ (iα)2xαT

α

i = 0. (3.8)

Multiplying both sides of the above equation by 1
x

√
x−α − 1, we obtain

x
√
x−α − 1y′′ +

√
x−α − 1

(
1− α

2(1− xα)

)
y′ + (iα)2

1

x
√
x−α − 1

y = 0.

This leads to the desired result. �

3.1. Function approximation and error estimation. Let wα(x) =
1

x
√
x−α−1

de-

note a non-negative, integrable, real valued function over the interval I = (0, 1). We
define

L2
wα

:= {v : I → R| v is measurable and ∥v∥wα < ∞},
where

∥v∥wα =

(∫ 1

0

|v(x)|2wα(x)dx

) 1
2

,

is the norm induced by the inner product

⟨u, v⟩wα =

∫ 1

0

u(x)v(x)wα(x)dx. (3.9)

Thus, using Lemma 3.1, {Tα

n(x)}∞n=0 denote a system which are mutually orthogonal
under (3.9). For any function f ∈ L2

wα
, we approximate

f≈
N∑

k=0

fkT
α

k (x), (3.10)
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with

fk =
⟨f, Tα

k ⟩wα

∥Tα

k∥2wα

. (3.11)

The fk’s are the expansion coefficients associated with the family {Tα

k}. We now

consider error estimate for approximation using the orthogonal system {Tα

n(x)}∞n=0.
Let N be any positive integer and

V α
N := span{Tα

0 (x), T
α

1 (x), · · · , T
α

N (x)}, (3.12)

and, let Pα
N : L2

wα
→ V α

N be the L2
wα

-orthogonal projector defined by

⟨Pα
Nf − f, ϕ⟩wα = 0, ∀ϕ ∈ V α

N . (3.13)

In other hand, Pα
Nf =

∑N
k=0 fkT

α

k (x) is the best approximation of f out of V α
N . The

following theorem gives the error estimation for this approximation in wα-norm.

Theorem 3.4. If Diαf(x) ∈ C(0, 1] for i = 0, 1, · · · , N + 1 and Pα
Nf be the best

approximation to f out of V α
N , then the error bound can be obtained from the following

formula:

∥f − Pα
Nf∥wα ≤ Mα

Γ
(
(N + 1)α+ 1

)√√
π

α

Γ
(
2N + 3

2

)
Γ(2N + 3)

,

where
Mα = sup{|DNαf(x)|, x ∈ (0, 1]}.

Proof. Consider the generalized Taylor polynomial:

y(x) =
N∑
i=0

xiα

Γ(iα+ 1)
Diαf(0+), x ∈ (0, 1],

in which the following error bound is known:

|f(x)− y(x)| =
∣∣ x(N+1)α

Γ
(
(N + 1)α+ 1

)D(N+1)αf(ξx)
∣∣

≤ Mα
x(N+1)α

Γ
(
(N + 1)α+ 1

) .
Since Pα

Nf(x) and y(x) are both in V α
N and Pα

Nf(x) is the best approximation to f(x)
out of V α

N , we get

∥f − Pα
Nf∥2wα

≤ ∥f − y∥2wα
≤ M2

α

Γ
(
(N + 1)α+ 1

)2 ∫ 1

0

x2(N+1)α

x
√
x−α − 1

dx

=
M2

α

Γ
(
(N + 1)α+ 1

)2 2

α

∫ ∞

0

( 1

1 + u2

)2N+3

du

=
M2

α

Γ
(
(N + 1)α+ 1

)2 2

α

√
π

2

Γ
(
2N + 3

2

)
Γ(2N + 3)

,

this leads to the desired result. �
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4. The operational matrix of fractional derivative

Let us introduce some notation.

Tα(x) = [T
α

0 (x), T
α

1 (x), · · · , T
α

N (x)]T ,

Xα(x) = [1, xα, x2α, · · · , xNα]T . (4.1)

By using Eq. (2.7) we can write:

Tα(x) = FXα, (4.2)

or

T
α

i (x) =
N∑
j=0

fijx
jα, i = 0, 1, 2, · · · , N. (4.3)

The fractional derivative of order γ of the vector Tα(x) can be expressed by

DγTα(x) ≃ D(γ)Tα(x),

where D(γ) is the (N + 1) × (N + 1) operational matrix of the fractional derivative.

In this section, our aim is to construct D(γ).

Remark 4.1. It is important to mention here that, in this paper we assume α ∈ N0

or α > ⌊γ⌋ when α /∈ N.

Lemma 4.2. Let

k =

{
the largest integer such that kα < ⌈γ⌉, α ∈ N0,

0, α /∈ N and α > ⌊γ⌋.
. (4.4)

Then, the Caputo fractional derivative of order γ of the vector Xα(x) can be expressed
as

DγXα(x) = DγX
γ
α(x), (4.5)

where Dγ is a (n+ 1)× (n+ 1) diagonal matrix

Dγ =



0 · · · 0 0 · · · 0
...

. . .
...

... · · · 0
0 · · · 0 0 · · · 0

0 · · · 0 Γ((k+1)α+1)
Γ((k+1)α+1−γ) · · · 0

...
. . .

. . .
...

0 · · · · · · · · · 0 Γ(Nα+1)
Γ(Nα+1−γ)


, (4.6)

and

Xγ
α(x) =

[
0, · · · , 0, x(k+1)α−γ , x(k+2)α−γ , · · · , xNα−γ

]T
. (4.7)
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Proof. Using Eq. (2.11) we have

DγXα(x) =


0

Dγxα

...
DγxNα

 = DγX
γ
α(x),

where

Dγ =



0 · · · 0 0 · · · 0
...

. . .
...

... · · · 0
0 · · · 0 0 · · · 0

0 · · · 0 Γ((k+1)α+1)
Γ((k+1)α+1−γ) · · · 0

...
. . .

. . .
...

0 · · · · · · · · · 0 Γ(Nα+1)
Γ(Nα+1−γ)


,

and

Xγ
α(x) =



0
...
0

x(k+1)α−γ

...
xNα−γ


.

�

It is important to note that, in Dγ , the first k + 1 rows, are all zero.

Lemma 4.3. With the notations of Lemma 4.2. We can approximate Xγ
α(x) as:

Xγ
α(x) ≃ BTα(x), (4.8)

where B = (bij) is a (N + 1)× (N + 1) matrix with the following entries:

bij =


0,

{
i = 0, 1, 2, · · · , k,
j = 0, 1, 2, ..., N,

√
π

hj

∑j−1
l=0 fjl

Γ(i+l− γ
α+ 1

2 )
Γ(i+l− γ

α+1)
,

{
i = k + 1, k + 2, · · · , N,

j = 0, 1, 2, ..., N.

Proof. Clearly, for i = 0, 1, · · · , k, we have bij = 0. Now, for some i > k, approximate
xiα−γ by N + 1 terms of fractional-order Chebyshev series, we get

xiα−γ ≃
N∑
j=0

bijT
α

j (x).
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By using Eqs. (3.11) and (4.3) we obtained

bij =
α

hj

∫ 1

0

xiα−γT
α

j (x)
1

x
√
x−α − 1

dx

=
α

hj

∫ 1

0

xiα−γ

j−1∑
l=0

fjlx
lα 1

x
√
x−α − 1

dx

=
α

hj

j−1∑
l=0

fjl

∫ 1

0

xiα−γxlα 1

x
√
x−α − 1

dx

=
α

hj

j−1∑
l=0

fjl

∫ 1

0

G(x, i, l, α, γ)dx.

Set u =
√
x−α − 1, we get∫ 1

0

G(x, i, l, α, γ)dx =
2

α

∫ ∞

0

du

(u2 + 1)i−
γ
α+l

=
2

α

√
π

2

Γ(i+ l − γ
α + 1

2 )

Γ(i+ l − γ
α + 1)

.

Thus

bij =

√
π

hj

j−1∑
l=0

fjl
Γ(i+ l − γ

α + 1
2 )

Γ(i+ l − γ
α + 1)

,

where hj is defined in (2.5). �

We are now ready to state the main result of this section.

Theorem 4.4. Let Tα(x) be FCFs vector, D(γ) is the (N + 1)× (N + 1) operational
matrix of fractional derivative of order γ > 0 in Caputo sense and α ∈ N0 or α > ⌊γ⌋
when α /∈ N then

D(γ) ≃ F Dγ B,

where Dγ ,B and F are given in Eqs. (4.6), (4.8) and (2.7) respectively.

Proof. Applying Eq. (4.2), Lemmas 4.2 and 4.3, we can write γth order fractional
derivative of Tα(x) as

DγTα(x) = FDγXα(x) = FDγX
γ
α(x)

≃ FDγBTα(x)

= D(γ)Tα(x).

�

Proposition 4.5. In particular, when γ = α, D(α) can be computed as

D(α) = F DαF
−1,
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where Dα is the (N + 1)× (N + 1) matrix given by

Dα =



0 0 · · · 0 0
Γ(α+1)
Γ(1) 0 · · · 0 0

0 Γ(2α+1)
Γ(α+1)

. . .

...
. . .

. . .
. . .

...

0 · · · 0 Γ(Nα+1)

Γ
(
(N−1)α+1

) 0


. (4.9)

Proof. Using (2.11) we have

Dαxα =
Γ(α+ 1)

Γ(1)
, Dαx2α =

Γ(2α+ 1)

Γ(α+ 1)
xα, . . . ,

DαxNα =
Γ(Nα+ 1)

Γ
(
(N − 1)α+ 1

)x(N−1)α. (4.10)

Thus, αth order fractional derivative of Xα(x) is written in the matrix form

DαXα(x) = DαXα(x), (4.11)

According to Eq. (4.2), we have

Xα(x) = F−1Tα(x), (4.12)

Therefore, using Eqs. (4.2), (4.11) and (4.12) we obtain

DαTα(x) = F DαXα(x) = F DαXα(x)

= F DαF
−1Tα(x).

�

Remark 4.6. It should be noted that, the operational matrix of the fractional de-
rivative of Tα(x) with α = 1, is in complete agreement with Chebyshev operational
matrix of fractional derivative obtained by Doha et al. (see [14] Eq. (3.5)).

5. Applications of the operational matrix of fractional derivatives

In this section, in order to show the efficiency of operational matrix of fractional
derivative, we apply it to solve multi-order fractional differential equation.

5.1. Linear multi-order FDEs. Consider the linear multi-order FDE

Dγy(x) = a1D
β1y(x) + · · ·+ akD

βky(x) + ak+1y(x) + ak+2g(x), (5.1)

with initial conditions

y(i)(0) = di, i = 0, . . .m, (5.2)

where aj , for j = 1, ..., k+2 are real constant coefficients and also m < γ ≤ m+1, 0 <
β1 < β2 < · · · < βk < γ. To solve problem (5.1) and (5.2), suppose y(x) and g(x) be
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in L2
wα

. Using the L2
wα

-orthogonal projector defined in (3.13), we approximate y(x)
and g(x) by FCFs as

y(x) ≃
N∑
i=0

ciT
α

i (x) = CTTα(x), (5.3)

g(x) ≃
N∑
i=0

giT
α

i (x) = GTTα(x), (5.4)

where vector G = [g0, ..., gN ]T is known but C = [c0, ..., cN ]T is an unknown vector.
By using Theorem 4.4 and Eq. (5.3), we have

Dγy(x) ≃ CTDγTα(x) ≃ CTD(γ)Tα(x), (5.5)

Dβjy(x) ≃ CTDβjTα(x) ≃ CTD(βj)Tα(x), j = 1, . . . k. (5.6)

Employing Eqs. (5.3), (5.4), (5.5) and (5.6) the residual RN (x) for Eq. (5.1) can be
written as

RN (x) ≃

CTD(γ) − CT
k∑

j=1

ajD
(βj) − ak+1C

T − ak+2G
T

Tα(x). (5.7)

As in a typical tau method [6], we generate m− n linear equations by applying

⟨RN (x), T
α

j (x)⟩wα =

∫ 1

0

RN (x)T
α

j (x)wα(x)dx = 0, j = 0, 1, ..., N −m− 1. (5.8)

Also, by using Theorem 4.4 and by substituting Eq. (5.3) in Eq. (5.2) we get

y(i)(0) = CTD(i)Tα(0) = di, i = 0, 1, ...,m. (5.9)

Equations (5.8) and (5.9) generate (N − m) and (m + 1) set of linear equations,
respectively. These linear equations can be solved for unknown coefficients of the
vector C. Consequently, y(x) given in Eq. (5.3) can be calculated.

5.2. Nonlinear multi-order FDFs. Consider the nonlinear multi-order FDE

F
(
x, y(x), Dβ1y(x), . . . , Dβky(x)

)
= 0, (5.10)

with boundary or supplementary conditions

Hi(y(ξi), y
′(ξi), ..., y

(p)(ξi)) = di, i = 0, 1, ..., p, (5.11)

where 0 ≤ p < max{βi, i = 1, ..., k} ≤ p+ 1, ξi ∈ [0, 1], i = 0, ..., p and Hi are linear
combinations of y(ξi), y

′(ξi), ..., y
(p)(ξi). In order to use FCFs for this problem, we

approximate y(x) by Eq. (5.3). Now, using Theorem 4.4 we have

Dβjy(x) ≃ CTDβjTα(x) ≃ CTD(βj)Tα(x), j = 1, . . . k. (5.12)

By substituting these equations in Eq. (5.10) we get

F
(
x,CTTα(x), C

TD(β1)Tα(x), . . . , C
TD(βk)Tα(x)

)
= 0. (5.13)
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Similarly, substituting Eq. (5.3) in Eq. (5.11) yields

Hi(C
TTα(ξi), C

TD(1)Tα(ξi), ..., C
TD(p)Tα(ξi)) = di, i = 0, 1, ..., p. (5.14)

To find the solution y(x), we first collocate Eq. (5.13) at (N − p) points. For suitable

collocation points we use the roots of T
α

N−p(x) which computed in (3.3). These
equations together with Eq. (5.14) generate (N + 1) algebraic equations which can
be solved to find ci, i = 0, ..., N . Consequently the unknown function y(x) given in
Eq. (5.3) can be calculated.

6. Numerical examples

In this section, we exemplify the proposed approximation procedure with some
examples.

Example 1. We start with the Bagley-Torvik equation

AD2y(x) +BD
3
2 y(x) + Cy(x) = g(x).

This equation arises, for example, in the modelling of the motion of a rigid plate
immersed in a Newtonian fluid [42]. Here A = M is the mass of thin rigid plate and
C = K is the stiffness of the spring. Also, B = 2S

√
µρ where S is area of plate

immersed in Newtonian fluid, µ is viscosity, and ρ is the fluid density. This equation
has attracted much attention and has been studied by many authors [14, 22, 39].
Here, we consider inhomogeneous Bagley-Torvik equation

D2y(x) +D
3
2 y(x) + y(x) = g(x),

in two cases.

Case a: g(x) = 1 + x, y(0) = 1, y′(0) = 1.

The exact solution of the problem in this case is y(x) = 1 + x. By applying the
technique described in Section 5.1 with N = 2 and α = 1, we approximate solution
as

y(x) = c0T
1

0(x) + c1T
1

1(x) + c2T
1

2(x) = CTT1(x).

Here, we have

D(1) =

0 0 0
2 0 0
0 8 0

 , D(2) =

 0 0 0
0 0 0
16 0 0

 ,

D( 3
2 ) =

(
1√
π3

) 0 0 0
0 0 0
64 128

3 −128
15

 , G =

 3
2
1
2
0

 .

Therefore using Eq. (5.8) we obtain

c0 +
(
16 + 64π− 3

2

)
c2 =

3

2
. (6.1)

Now, by applying Eq. (5.9) we have

CTT1(0) = c0 − c1 + c2 = 1, (6.2)



80 M. A. DARANI AND A. SAADATMANDI

CTD(1)T1(0) = 2c1 − 8c2 = 1. (6.3)

Finally by solving linear system of three equations, (6.1), (6.2) and (6.3) we get

c0 =
3

2
, c1 =

1

2
, c2 = 0.

Thus

y(x) =

(
3

2
,
1

2
, 0

) 1
2x− 1

8x2 − 8x+ 1

 = 1 + x,

which is the exact solution.

Case b: g(x) = x2 + 2 + 4
√

x
π , y(0) = 0, y(1) = 1.

In this case, the problem has the exact solution y(x) = x2. Taking α = 2 and
N = 2, we obtain:

D(2) =

 0 0 0
4 0 0
32 48 0

 ,

D( 3
2 ) =


0 0 0

16
√
2Γ( 3

4 )
2

π2
32
5

√
2Γ( 3

4 )
2

π2 −32
15

√
2Γ( 3

4 )
2

π2

1472
25

√
2Γ( 3

4 )
2

π2
1664
15

√
2Γ( 3

4 )
2

π2
3712
195

√
2Γ( 3

4 )
2

π2

 .

After solving the system of 3 algebraic equations the unknown coefficients are com-
puted as:

c0 =
1

2
, c1 =

1

2
, c2 = 0.

Thus

y(x) =

(
1

2
,
1

2
, 0

) 1
2x2 − 1

8x4 − 8x2 + 1

 = x2,

which is the exact solution. Example 2. As the second example, consider the
fractional differential equation [24]

D0.5y(x) + y(x) =
√
x+

√
π

2
,

y(0) = 0.

Lakestani et al. [24] applied a method based on linear cardinal B-spline functions
for the approximate solution of this example. Regarding example 1, in [24], the best
result is achieved by solving a system of equations with 28+1 set of algebraic equations
and the maximum absolute error is 7.8× 10−5. We solved this problem, by applying
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the technique described in Section 5.1, with α = 1
2 and N = 1. Here, we have

D( 1
2 ) =

(
0 0√
π 0

)
, G =

 1+
√
π

2

1
2

 .

Therefore, we obtain the following system of algebraic equations:{
c0 − c1 = 0,

c0 +
√
πc1 = 1

2 (1 +
√
π).

Solving these equations yields

c0 =
1

2
, c1 =

1

2
.

Thus

y(x) =

(
1

2
,
1

2

)(
1

2x
1
2 − 1

)
=

√
x,

which is the exact solution.
Example 3. Consider the following linear initial value problem [18, 36]

Dγy(x) + y(x) = 0,

y(0) = 1, 0 < γ ≤ 1.

The exact solution for this problem is given by y(x) = Eγ(−xγ), where Eγ(t) is the
Mittag-Leffler function defined by [12]

Eγ(t) =

∞∑
k=0

tk

Γ(kγ + 1)
, γ > 0,

We solve this problem with placing α = γ. Here, we use the least square norm as

eN =

√√√√ N∑
i=0

(
ỹN (ti)− y(ti)

)2
,

where ỹN is the approximated solution and ti are given in Eq. (3.3). In Figure 1, the
approximation error eN as a function of the discretization parameter N for different
values of γ is plotted in a semi-log coordinate system. As one can see, eN decreases
rapidly. Also Figure 1 shows that our new approximate solution is in good agreement
with the collocation method based on Müntz polynomials given in [18]. Furthermore
the graph of absolute error function |y(x)− ỹ10(x)| for γ = 0.2, 0.4, 0.6 and 0.8 is given
in Figure 2. From Figure 2, we can see that the new method presented in the current
paper provides accurate results even by using N = 10.
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Figure 1. Approximation error eN for various values of γ for Ex-
ample 3.
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Figure 2. Plot of absolute error function |y(x)− ỹ10(x)| for various
values of γ for Example 3.

Example 4. Let us consider the following nonlinear fractional initial value problem
[12, 18, 39]

Dγy(x) =
40320

Γ(9− γ)
x8−γ − 3

Γ(5 + γ
2 )

Γ(5− γ
2 )

x4− γ
2

+
9

4
Γ(γ + 1) +

(
3

2
x

γ
2 − x4

)3

− y(x)
3
2 , γ, x ∈ (0, 1),

y(0) = 0.

The exact solution is y(x) = x8 − 3x4+ γ
2 + 9

4x
γ . The approximation error eN for

α = γ and for different values of γ is plotted in Figure 3. As expected, the error eN
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Figure 3. Approximation error eN for various values of γ for Ex-
ample 4.
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shows an exponential decay. Also Table 1, shows the absolute errors obtained by the
present method for α = γ and for different values of γ. These results demonstrate
the spectral accuracy of the present method for this example.

Table 1. Absolute values of errors for Example 3.

xi

γ N 0.125 0.375 0.5 0.625 0.875

10 4.7 ×10−4 6.1 ×10−3 4.4 ×10−3 8.8 ×10−3 1.2 ×10−2

15 3.2 ×10−5 6.6 ×10−5 1.3 ×10−4 9.1 ×10−5 1.6 ×10−4

0.25 20 1.2 ×10−7 1.4 ×10−7 1.4 ×10−7 8.5 ×10−8 8.2 ×10−8

25 1.5 ×10−11 1.7 ×10−11 7.0 ×10−12 2.3 ×10−12 2.6 ×10−11

10 9.2 ×10−5 3.1 ×10−5 1.7 ×10−4 2.0 ×10−4 2.4 ×10−4

15 6.8 ×10−10 3.2 ×10−10 4.9 ×10−10 7.7 ×10−10 5.7 ×10−10

0.50 20 3.9 ×10−14 2.8 ×10−14 3.2 ×10−15 2.7 ×10−5 3.1 ×10−5

25 7.4 ×10−16 6.7 ×10−16 4.0 ×10−16 4.7 ×10−16 2.9 ×10−16

10 1.8 ×10−7 6.7 ×10−8 2.9 ×10−7 4.8 ×10−7 1.6 ×10−7

15 1.0 ×10−10 1.1 ×10−10 9.9 ×10−11 8.2 ×10−11 2.4 ×10−11

0.75 20 2.2 ×10−12 1.1 ×10−12 2.5 ×10−12 1.3 ×10−12 6.1 ×10−13

25 2.0 ×10−13 1.5 ×10−13 7.8 ×10−14 1.4 ×10−14 3.6 ×10−14

10 9.8 ×10−8 4.7 ×10−8 4.3 ×10−8 1.0 ×10−7 8.1 ×10−8

15 5.7 ×10−9 1.1 ×10−9 3.3 ×10−9 7.7 ×10−10 1.6 ×10−9

1.0 20 1.5 ×10−10 7.3 ×10−11 6.9 ×10−11 1.6 ×10−10 9.0 ×10−11

25 3.7 ×10−11 7.1 ×10−12 5.3 ×10−12 3.9 ×10−12 9.0 ×10−12

Example 5. As the last example, consider the following fractional Riccati equation
[22, 33]

Dγy(x) = −y2(x) + 1, x > 0

y(0) = 0, γ ∈ (0, 1].
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Figure 4. Plot of the absolute error function |y(x) − ỹ12(x)| with
γ = α = 1 for Example 5.

The exact solution, when γ = 1 is y(x) = (e2x+1)/(e2x−1). We solved this problem,
by applying the technique described in Section 5.2. In Figure 4, we plot the absolute
error function |y(x) − ỹ12(x)| for γ = α = 1, which shows that the new numerical
solution is closely correlated to the exact solution. The exact solutions for the values
of γ ̸= 1 are not exist. Therefore, see [22], to show efficient of our method we define
the norm of residual error as follows

ResN (x) = Dγ ỹN (x) + ỹ2N (x)− 1, ∥ResN (x)∥2 =

∫ 1

0

Res2N (x)dx (6.4)

In Figure 5 we plot ∥ResN (x)∥2 obtained by the present method with N = 10 and
various values of γ = α. Figures 4 and 5, demonstrate the advantages and the
accuracy of the present method for solving nonlinear fractional Riccati equation.

7. Conclusion

In this paper, we first introduce fractional-order Chebyshev functions, then we
obtain a new fractional derivative operational matrix for these orthogonal functions.
This matrix can be used to solve fractional differential equations, like that of the
other orthogonal functions. The method is general, easy to implement, and yields
very accurate results. Illustrative examples are included to demonstrate the validity
and applicability of the technique and the exact solutions are obtained for some test
problems.
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Figure 5. Plot of the ∥ResN (x)∥2 for Example 5, with N = 10 and
various values of γ = α.
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with a collocation method based on Müntz polynomials, Comput. Math. Appl., 62 (2011), 918-

929.
[19] A. K. Golmankhaneh and D. Baleanu, On nonlinear fractional Klein-Gordon equation, Signal

Processing, 91 (2011), 446-451.
[20] H. Jiang, F. Liu, I. Turner, and K. Burrage, Analytical solutions for the multi-term time-

fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl., 64
(2012), 3377-3388.

[21] A. Kayedi-Bardeh, M. R. Eslahchi, and M. Dehghan, A method for obtaining the operational
matrix of fractional Jacobi functions and applications, J. Vib. Control, 20 (2014), 736-748.

[22] S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order Legendre functions for solving
fractional-order differential equations, Appl. Math. Modelling, 37 (2013), 5498-5510.

[23] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Dif-

ferential Equations, Elsevier, San Diego, 2006.
[24] M. Lakestani, M. Dehghan, and S. Irandoust-pakchin, The construction of operational matrix

of fractional derivatives using B-spline functions, Commun Nonlinear Sci Numer Simulat, 17
(2012), 1149-1162.

[25] X. Li, Numerical solution of fractional differential equations using cubic B-spline wavelet col-
location method, Commun Nonlinear Sci Numer Simulat., 17 (2012), 3934-3946.

[26] K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential
Equations, Wiley, New York, 1993.

[27] A. Mohebbi, M. Abbaszadeh, and M. Dehghan, Compact finite difference scheme and RBF
meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade
fluid with fractional derivatives, Comput. Methods Appl. Mech. Engrg., 264 (2013), 163-177.

[28] A. Mohebbi, M. Abbaszadeh, and M. Dehghan, The use of a meshless technique based on

collocation and radial basis functions for solving the time fractional nonlinear Schrödinger
equation arising in quantum mechanics, Eng. Anal. Bound. Elem., 37 (2013), 475-485.

[29] S. Momani and Z. Odibat, Numerical comparison of methods for solving linear differential
equations of fractional order, Chaos, Soliton Fract., 31 (2007), 1248-1255.

[30] S. Momani and Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by
Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488-494.

[31] A. Nkwanta and E. R. Barnes, Two Catalan-type Riordan arrays and their connections to the

Chebyshev polynomials of the first kind, Journal of Integer Sequences, 15(2) (2012), 3.
[32] Z. Odibat and S. Momani, A generalized differential transform method for linear partial differ-

ential equations of fractional order, Appl. Math. Lett., 21 (2008), 194-199.
[33] Z. Odibat and S. Momani, Modified homotopy perturbation method: application to quadratic

Riccati differential equation of fractional order, Chaos Soliton Fract., 36 (2008), 167-174.



CMDE Vol. 5, No. 1, 2017, pp. 67-87 87

[34] Z. M. Odibat and N. T. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput., 186
(2007), 286-293.

[35] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

[36] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[37] A. Saadatmandi, Bernstein operational matrix of fractional derivatives and its applications,

Appl. Math. Modelling, 38 (2014), 1365-1372.
[38] A. Saadatmandi and M. Dehghan, A tau approach for solution of the space fractional diffusion

equation, Comput. Math. Appl., 62 (2011), 1135-1142.
[39] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differ-

ential equations, Comput. Math. Appl., 59 (2010), 1326-1336.
[40] A. Saadatmandi, M. Dehghan, and M. R. Azizi, The Sinc-Legendre collocation method for a

class of fractional convection-diffusion equations with variable coefficients, Commun Nonlinear
Sci Numer Simulat., 17 (2012), 4125-4136.

[41] L. Su, W. Wang, and Q. Xu, Finite difference methods for fractional dispersion equations, Appl.

Math. Comput., 216 (2010), 3329-3334.
[42] P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of

real materials, ASME J. Appl. Mech., 51 (1984), 294-298.
[43] Q. Yu, F. Liu, I. Turner, and K. Burrage, Numerical simulation of the fractional Bloch equations,

J. Comput. Appl. Math., 255 (2014), 635-651.


