تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,485,508 |
تعداد دریافت فایل اصل مقاله | 15,213,059 |
تأثیر احداث سد زیرزمینی بر آبدهی قنات با استفاده از مدل MODFLOW (مطالعه موردی صوفی- ماکو) | ||
دانش آب و خاک | ||
مقاله 22، دوره 26، شماره 4.1، اسفند 1395، صفحه 295-305 اصل مقاله (488.05 K) | ||
نوع مقاله: مقاله پژوهشی | ||
نویسندگان | ||
بابک واحددوست1؛ حسین رضایی2؛ جواد بهمنش* 2 | ||
1دانشجوی دکتری مهندسی عمران- هیدرولیک و منابع آب، دانشگاه صنعتی استانبول | ||
2دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه | ||
چکیده | ||
امروزه بهدلیل خشکسالیهای متوالی و افزایش جمعیت، مدیریت و استفادۀ بهینه از منابع آب نقش مهمی در توسعۀ پایدار دارد. یکی از روشهای توسعۀ منابع آب، استفاده از سدهای زیرزمینی میباشد. سدهای زیرزمینی با تقویت میزان ذخیرهسازی آبخوان، شرایط مناسبی را برای عملکرد بهتر قنات فراهم میآورند. در تحقیق حاضر با استفاده از دادههای سه حلقه چاه مشاهداتی، دو رشته قنات و با کمک نرمافزار MODFLOWتغییرات سطح آب زیرزمینی در زیر بستر رودخانه صوفی، واقع در منطقۀ روستای صوفی از توابع استان آذربایجان غربی مورد مطالعه قرار گرفت. بعد از واسنجی مدل و مدلسازی با در نظر گرفتن سد زیرزمینی، سطح آب در چاههای مشاهداتی پیشبینی شد. سپس تأثیر ساخت سد زیرزمینی بر روی قنات و بیلان آبی مورد بررسی قرار گرفت. مقایسه نتایج نشان داد که دادههای حاصل از مدل تطابق قابل قبولی را با دادههای مشاهداتی در یک سال بعد از ساخت سد زیرزمینی دارد. همچنین مقایسه دادههای مشاهداتی و برآوردی در دو چاه بالادست سد زیرزمینی نشان داد که اختلاف بین آنها در چند سانتیمتر محدود شده است که متوسط درصد مربعات خطا برای حالت ماندگار با 34/4 و در حالت غیرماندگار 37/7 بود. | ||
کلیدواژهها | ||
آب زیرزمینی؛ سد زیرزمینی؛ قنات؛ واسنجی؛ MODFLOW | ||
مراجع | ||
جعفری باری م، 1382. گزارش نهایی طرح تحقیقاتی بررسی کاربرد سدهای زیرزمینی در مدیریت آب قنوات، مطالعه موردی مسیل روستای صوفی-ماکو. وزارت جهاد کشاورزی، سازمان تحقیقات آموزش کشاورزی، مرکز تحقیقات حفاظت خاک و آبخیزداری. علیزاده ا، 1392. اصول هیدرولوژی کاربردی. چاپ بیست و سوم. مشهد: دانشگاه امام رضا (ع). 6 الف8ع/2/661GB. کتابخانه ملی: 27513-82م. Ahuja LR, Naney JW, Green RE and Nielsen DR, 1984. Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society of America Journal 48(4): 699-702.
Archwichai L, Mantapan K and Srisuk K, 2005. Approachability of subsurface dams in the Northeast Thailand. Pp. 28-30. International Conference on Geology, Geo-Technology and Mineral Resources of Indochina (GEOINDO 2005). Khon Kaen University, Khon Kaen,Thailand.
Botros FE, Onsoy YS, Ginn TR and Harter T, 2012. Richards’s equation–based modeling to estimate flow and nitrate transport in a deep alluvial vadose zone. Vadose Zone Journal 11(4): 1–16.
Chiang WH, 2005. 3D Groundwater Modeling With PMWIN: A Simulation System for Modeling Groundwater Flow and Transport Process. Springer, Heidelberg, Germany.
Chiang WH and Kinzelbach W, 2001. 3D-Groundwater Modeling with PMWIN. Springer 46. Berlin, Germany.
Dowlatabadi S and Zomorodian SA, 2016. Conjunctive simulation of surface water and groundwater using SWAT and MODFLOW in Firoozabad watershed. KSCE Journal of Civil Engineering 20(1): 485-496.
El-Hames AS, 2012. Determination of the transient water table rise behind constructed underground dams. Arabian Journal of Geosciences 5(6): 1359-1366.
Epting J, Romanov D, Huggenberger P and Kaufmann G, 2009. Integrating field and numerical modeling methods for applied urban karst hydrogeology. Hydrology and Earth System Sciences 13: 1163-1184.
Hardelauf H, Javaux M, Herbst M, Gottschalk S, Kasteel R, Vanderborght J and Vereecken H, 2007. PARSWMS: A parallelized model for simulating three-dimensional water flow and solute transport in variably saturated soils. Vadose Zone Journal 6(2): 255-259.
Hoanh CT, Phong ND, Gowing JW, Tuong TP, Ngoc NV and Hien NX, 2009. Hydraulic and water quality modeling: a tool for managing land use conflicts in inland coastal zones. Water Policy11(S1): 106-120.
Lalehzari R and Tabatabaei SH, 2015. Simulating the impact of subsurface dam construction on the change of nitrate distribution. Environmental Earth Sciences 74(4): 3241-3249.
Srivastava R and Jim Yeh TC, 1992. A three-dimensional numerical model for water flow and transport of chemically reactive solute through porous media under variably saturated conditions. Advances in Water Resources 15(5): 275-287.
Voss CI, 1984. A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. USGS 84, No. 4369.
Xu X, Huang G, Zhan H, Qu Z and Huang Q, 2012. Integration of SWAP and MODFLOW-2000 for modeling groundwater dynamics in shallow water table areas. Journal of Hydrology 412: 170-181.
Yakirevich A, Melloul A, Sorek S, Shaath S and Borisov V, 1998. Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeology Journal 6(4): 549-559.
Yilmaz M, 2003. Control of groundwater by underground dams. Ph.D. dissertation, Middle East Technical University- Department of Civil Engineering, Ankara, Turkey. | ||
آمار تعداد مشاهده مقاله: 1,791 تعداد دریافت فایل اصل مقاله: 1,506 |