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Abstract The aim of this paper is to present a new numerical method for solving the Bagley-

Torvik equation. This equation has an important role in fractional calculus. The
fractional derivatives are described based on the Caputo sense. Some properties
of the sinc functions required for our subsequent development are given and are
utilized to reduce the computation of solution of the Bagley-Torvik equation to

some algebraic equations. It is well known that the sinc procedure converges to the
solution at an exponential rate. Numerical examples are included to demonstrate
the validity and applicability of the technique.
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1. Introduction

A history of fractional calculus, i.e. the theory of derivatives and integrals of frac-
tional (non-integer) order, can be found in [11, 14, 16]. Both differential equations
and fractional differential equations have been used to model physical and engineering
processes such as electromagnetic, acoustics, viscoelasticity, electroanalytical chem-
istry, neuron modeling, diffusion processing and material sciences (see for example
[2, 5, 7, 13, 20] and the references therein). The analytic results on existence and
uniqueness of solutions to fractional differential equations have been investigated by
many authors [7, 16]. In general, most of the fractional differential equations do not
have exact solutions. Recently increased attention has turned to comparing numeri-
cal methods for solving fractional differential equations, fractional partial differential
equations, fractional integro-differential equations and dynamic system containing
fractional derivative (see for example [3, 8, 12, 18, 21, 22, 23]).
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In this study, we consider the Bagley-Torvik equation

A1y
(2) +A2y

(3/2) +A3y = f(x), x ∈ [0, 1], (1.1)

with the boundary conditions

y(0) = a, y(1) = b, (1.2)

where A1, A2, A3, a, b are real constants and y(x) is an unknown function. The Bagley-
Torvik equation arises in modeling of the motion of a thin rigid plate immersed in
a Newtonian fluid [6, 16]. This equation has been numericaly solved by using the
hybridizable discontinuous Galerkin methods [6], pseudo-spectral scheme [3], Bessel
collocation method [28], generalized Taylor collocation method [1], Haar wavelet, [17]
and hybrid functions [10].

In the present paper we intend to extend the application of sinc mthods to solve the
Bagley-Torvik equation. Sinc function properties are discussed thoroughly in [9, 26]
and it is widely used for solving a wide range of problems arising from scientific and en-
gineering applications including Hallen’s integral equation [25], third-order boundary
value problems [24], squeezing flow [19], fractional convection-diffusion equations [23],
differential-algebraic equations [27] and Thomas-Fermi equation [15].

Our method consists of reducing the problem to the solution of algebraic equations
by expanding the required approximate solution as the elements of the sinc func-
tions with unknown coefficients. The properties of sinc functions are then utilized to
evaluate the unknown coefficients.

The organization of the rest of this paper is as follows: In Section 2, we introduce
some necessary definitions and mathematical preliminaries of sinc functions, fractional
calculus and Gauss-Jacobi quadrature. In Section 3, the new method proposed in the
current work is presented. As a result a set of algebraic equations is formed and
a solution of the considered problem is introduced. In Section 4, several numerical
results are given to show the efficiency of our methods. In Section 5, we give a brief
conclusion.

2. Preliminaries and notations

2.1. A short overview on sinc functions.
The goal of this section is to recall properties and definition of the sinc function.
These are discussed thoroughly in [9, 26]. The sinc function is defined on the whole
real line, −∞ < x <∞, by

sinc(x) =

{
sin(πx)
πx , x ̸= 0,

1, x = 0.

For h > 0, and k = 0,±1,±2, . . . , the translated sinc functions with evenly spaced
nodes are given by

S(k, h)(x) = sinc

(
x− kh

h

)
=

{
sin[πh (x−kh)]

π
h (x−kh) , x ̸= kh,

1, x = kh.
(2.1)
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The sinc function for the interpolating points xj = jh is given by

S(k, h)(jh) = δkj =

{
1, k = j,

0, k ̸= j.

If a function f(x) is defined on the real axis, then for h > 0 the series

C(f, h)(x) =

∞∑
k=−∞

f(kh) Sinc

(
x− kh

h

)
,

is called the Whittaker cardinal expansion of f whenever this series converges. The
properties of Whittaker cardinal expansion have been extensively studied in [9]. These
properties are derived in the infinite strip DS of the complex w-plane, where for d > 0,

DS =
{
w = t+ is : |s| < d ≤ π

2

}
.

Approximations can be constructed for infinite, semi-infinite and finite intervals. To
construct approximations on the interval (0, 1), which is used in this paper, the eye-
shaped domain in the z-plane

DE =

{
z = x+ iy :

∣∣∣∣ arg( z

1− z

)∣∣∣∣ < d ≤ π

2

}
,

is mapped conformally onto the infinite strip DS via

w = ϕ(z) = ln

(
z

1− z

)
.

The basis functions on (0, 1) are taken to be the composite translated sinc functions,

Sk(x) = S(k, h) ◦ ϕ(x) = sinc

(
ϕ(x)− kh

h

)
, (2.2)

where S(k, h) ◦ ϕ(x) is defined by S(k, h)(ϕ(x)). The inverse map of w = ϕ(z) is

z = ϕ−1(w) =
exp(w)

1 + exp(w)
.

Thus we may define the inverse images of the real line and of the evenly spaced nodes
{kh}∞k=−∞ as

Γ = {ψ(t) ∈ DE : −∞ < t <∞} = (0, 1),

and

xk = ϕ−1(kh) =
ekh

1 + ekh
, k = 0,±1,±2, . . . (2.3)

respectively.
The class of functions such that the known exponential error estimates exist for

sinc interpolation is denoted by B(DE) and is defined in the following.

Definition 2.1. Let B(DE) be the class of functions F which are analytic in DE ,
satisfy ∫

ψ(t+L)

|F (z)dz| −→ 0 , t −→ ±∞,
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where L =
{
iv : |v| < d ≤ π

2

}
, and on the boundary of DE , (denoted ∂DE), satisfy

N(F ) =

∫
∂DE

|F (z)dz| <∞.

Interpolation for function in B(DE) are defined in the following theorem whose
proof can be found in [26].

Theorem 2.2. If ϕ′F ∈ B(DE) then for all x ∈ Γ∣∣∣∣∣F (x)−
∞∑

k=−∞

F (xk)S(k, h) ◦ ϕ(x)

∣∣∣∣∣ ≤ N(Fϕ′)

2πd sinh(πd/h)

≤ 2N(Fϕ′)

πd
e−πd/h.

Moreover, if |F (x)| ≤ Ce−α|ϕ(x)|, x ∈ Γ, for some positive constants C and α, and if

the selection h =
√
πd/αN ≤ 2πd/ ln 2, then∣∣∣∣∣F (x)−

N∑
k=−N

F (xk)S(k, h) ◦ ϕ(x)

∣∣∣∣∣ ≤ C2

√
N exp(−

√
πdαN), x ∈ Γ,

where C2 depends only on F, d and α.

The above expressions show sinc interpolation onB(DE) converge exponentially [26].
We also require derivatives of composite sinc functions evaluated at the nodes. The
expressions required for the present discussion are [23].

δ
(0)
k,j = [S(k, h) ◦ ϕ(x)]|x=xj =

{
1, k = j,

0, k ̸= j.
(2.4)

δ
(1)
k,j = h

d

dϕ
[S(k, h) ◦ ϕ(x)]|x=xj =

{
0, k = j,

(−1)j−k

j−k , k ̸= j.
(2.5)

δ
(2)
k,j = h2

d2

dϕ2
[S(k, h) ◦ ϕ(x)]|x=xj =

{
−π2

3 , k = j,
−2(−1)j−k

(j−k)2 . k ̸= j.
(2.6)

2.2. The fractional derivative in the Caputo sense.
There are various definitions of fractional integration and differentiation of order
γ > 0, and not necessarily equivalent to each other [11, 14]. We recall here some
classical definitions which will be useful in the sequel.

Definition 2.3. Caputo’s definition of the fractional-order derivative is defined as

Dβf(x) =


1

Γ(n−β)
∫ x
0

f(n)(t)
(x−t)β+1−n dt, n− 1 < β < n, n ∈ N,

dn

dxn f(x), β = n ∈ N.
(2.7)

where β > 0 is the order of the derivative, Γ(.) is the Gamma function and n = [β]+1,
with [β] denoting the integer part of β.
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For the Caputo’s derivative we have [14],

DβC = 0, (C is a constant),

(2.8)

Dβxγ =

{
0, for γ ∈ N ∪ {0} and γ < ⌈β⌉,
Γ(γ+1)

Γ(γ+1−β)x
γ−β , for γ ∈ N ∪ {0} and γ ≥ ⌈β⌉.

(2.9)

We use the ceiling function ⌈β⌉ to denote the smallest integer greater than or equal
to β. Similar to integer-order differentiation, Caputo’s fractional differentiation is a
linear operator:

Dβ(c1f(x) + c2g(x)) = c1D
βf(x) + c2D

βg(x), (2.10)

where c1 and c2 are constants.

2.3. Gauss-Jacobi quadrature.

Let λ, µ > −1. The Jacobi polynomials P
(λ,µ)
m (x),m = 0, 1, 2, ..., x ∈ (−1, 1) are

defined by

P (λ,µ)
m (x) =

(−1)m

2mm!
(1− x)−λ(1 + x)−µ

dm

dxm
[(1− x)λ+m(1 + x)µ+m]. (2.11)

They have the following orthogonality relation∫ 1

−1

P (λ,µ)
n (x)P (λ,µ)

m (x)(1− x)λ(1 + x)µdx =

{
2λ+µ+1

λ+µ+2n+1
Γ(λ+n+1)Γ(µ+n+1)
n!Γ(λ+µ+n+1) , n = m,

0, n ̸= m.

As a result, all the zeros of P
(λ,µ)
m (x) are simple and belong to the interval (−1, 1).

For a given positive integer m, we denote the Gauss-Jacobi points with parameters λ

and µ, by {ξ(λ,µ)i }mi=1 which is the set of m roots of P
(λ,µ)
m (x).

The Gauss-Jacobi quadrature rule, with parameters λ and µ, is based on Gauss-

Jacobi points {ξ(λ,µ)i }mi=1 and can be used to approximate the integral of a function
over the range [−1, 1] with weight (1− x)λ(1 + x)µ as∫ 1

−1

f(x)(1− x)λ(1 + x)µdx ≈
m∑
i=1

ω
(λ,µ)
i f(ξ

(λ,µ)
i ), (2.12)

where the Gauss-Jacobi weights {ω(λ,µ)
i }mi=1 are given by [4]

ω
(λ,µ)
i =

Γ(λ+m+ 1)Γ(µ+m+ 1)

m!Γ(λ+ µ+m+ 1)

2λ+µ+1(
1−

(
ξ
(λ,µ)
i

)2
)[

P
(λ,µ)′
m (ξ

(λ,µ)
i )

]2 .
(2.13)

Gauss-Jacobi quadrature can be used to approximate integrals with singularities at
the end points. Also it is well known that Gauss-Jacobi quadrature is exact for all
polynomials of degree 2m− 1.
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3. Description of the method

First of all, we reformulate the problem (1.1)-(1.2) by applying the following trans-
formation that makes the boundary conditions become homogeneous

u(x) = y(x) + (a− b)x− a.

Therefore, we consider the following Bagley-Torvik equation

A1u
(2) +A2u

(3/2) +A3u = g(x), x ∈ [0, 1], (3.1)

with homogeneous boundary conditions

u(0) = 0, u(1) = 0, (3.2)

where g(x) = f(x)+A3((a− b)x− a). Now, we approximate solution for u(x), in Eq.
(3.1) as

u(x) ≈ uM (x) =

N∑
k=−N

ukSk(x), (3.3)

where uk = u(xk) and M = 2N +1. It is worth pointing out that uM (x) = 0 when x
tends to 0 or 1. The first derivative of Eq. (2.2) is given by

d

dx
[S(k, h) ◦ ϕ(x)] = ϕ′(x)

d

dϕ
[S(k, h) ◦ ϕ(x)] .

Thus, using Eq. (7) we get

d

dx
Sk(x)

∣∣∣∣
x=xj

=
1

h
ϕ′(xj)δ

(1)
kj . (3.4)

Similarly by taking the second derivative from Eq. (2.2) and using Eqs.(7) and (8)
we obtain

d2

dx2
Sk(x)

∣∣∣∣
x=xj

=
1

h
ϕ′′(xj)δ

(1)
kj +

1

h2
[ϕ′(xj)]

2δ
(2)
kj . (3.5)

Therefore, the approximations of the first and second derivatives at the sinc nodes xj
take the form

u′M (xj) =
N∑

k=−N

uk

{
1

h
ϕ′(xj)δ

(1)
kj

}
, (3.6)

u′′M (xj) =

N∑
k=−N

uk

{
1

h
ϕ′′(xj)δ

(1)
kj +

1

h2
[ϕ′(xj)]

2δ
(2)
kj

}
. (3.7)

The approximations (3.6) and (3.7) are more conveniently recorded by defining the

vector −→u = [u−N , ..., uN ]T . Then define theM×M Toeplitz matrices I(q) = [δ
(q)
kj ], q =

0, 1, 2. i.e., the matrix whose kj-entry is given by δ
(q)
kj . Also define the diagonal matrix

E(p) = diag[p(x−N ), ..., p(xN )]. The matrix I(0) is an identity matrix. Note that the
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matrix I(2) is a symmetric matrix, i.e., I
(2)
kj = I

(2)
jk and the matrix I(1) is a skew-

symmetric matrix, i.e., I
(1)
kj = −I

(1)
jk . They take the form

I(1) =


0 −1 . . . (−1)M−1

M−1

1 . . .
...

...
...

. . . −1
(−1)1−M

1−M . . . . . . 0


M×M

,

I(2) =


−π2

3 2 . . . −2(−1)M−1

(M−1)2

2 . . .
...

...
...

. . .
...

−2(−1)M−1

(M−1)2 . . . . . . −π2

3


M×M

.

Then approximations (3.6) and (3.7) can be written as

−→u ′ ≈
{
1

h
I(1)E(ϕ′)

}
−→u ≡ D(1)−→u . (3.8)

−→u ′′ ≈
{
1

h
I(1)E(ϕ′′) +

1

h2
I(2)E(ϕ′2)

}
−→u ≡ D(2)−→u . (3.9)

Also, the fractional derivative of order β for Sk(x) at the sinc nodes xj is given by

Dβ(Sk(x))
∣∣
x=xj

=
1

Γ(2− β)

∫ xj

0

(xj − t)1−βS
(2)
k (t)dt, 1 < β < 2. (3.10)

In order to use the Gauss-Jacobi quadrature formula for Eq. (3.10), we transfer the
t-interval [0, xj ] into τ -interval [−1, 1] by means of the transformation

τ =
2

xj
t− 1.

Eq. (3.10), may then be restated as

Dβ(Sk(x))
∣∣
x=xj

=
(
xj

2 )2−β

Γ(2− β)

∫ 1

−1

(1− τ)
1−β

S
(2)
k

(xj
2
(1 + τ)

)
dτ. (3.11)

Using the Gauss-Jacobi quadrature rule (2.13), with parameters λ = 1−β and µ = 0,
we obtain

Dβ(Sk(x))
∣∣
x=xj

≈
(
xj

2 )2−β

Γ(2− β)

m∑
i=1

ω
(1−β,0)
i S

(2)
k

(xj
2
(1 + ξ

(1−β,0)
i )

)
. (3.12)

Thus, the approximation of the fractional derivative of order β at the sinc nodes xj
takes the form

uβM (xj) =
N∑

k=−N

uk

{
δ
(β)
kj

}
, (3.13)
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where δ
(β)
kj is given by

δ
(β)
kj =

(
xj

2 )2−β

Γ(2− β)

m∑
i=1

ω
(1−β,0)
i S

(2)
k

(xj
2
(1 + ξ

(1−β,0)
i )

)
. (3.14)

Now, define the M ×M matrix D(β) = [δ
(β)
kj ], i.e., the matrix whose kj-entry is given

by δ
(β)
kj . Then, the approximation of the fractional derivative of order β can be written

as

−→u (β) ≈ D(β)−→u . (3.15)

Applying Eqs. (3.9) and (3.15) in Eq. (3.1), the vector of unknowns −→u is related to
the known vector −→g = [g(x−N ), ..., g(xN )]T by

(A1D
(2) +A2D

(3/2) +A3I
(0))−→u = −→g . (3.16)

Eq. (3.16) givesM linear algebraic equations. Therefore theseM algebraic equations
can be solved for the unknown vector −→u . Consequently uM (x) given in Eq. (3.3) can
be calculated.

4. Numerical results

In this section, we present some examples to show the efficiency of method for
solving the Bagley-Torvik equation. In all examples we choose α = 1/2 and d = π/2

which leads to h = π/
√
N . Also, we choose m = 10.

Example 1. In this example, we consider the Bagley-Torvik equation [28]

y(2) + y(3/2) + y = 1 + x, x ∈ [0, 1],

with the boundary conditions y(0) = 1 and y(1) = 2. By using the sinc method with
N = 2 we obtain y(x) = x+ 1, which is the exact solution of this problem.

Example 2. Let us solve the following Bagley-Torvik equation [10]

y(2) +
8

17
y(3/2) +

13

51
y =

x−1/2

89250
√
π

(
48p(x) + 7

√
πxq(x)

)
, x ∈ [0, 1],

where p(x) = 16000x4 − 32480x3 + 21280x2 − 4746x + 189 and q(x) = 3250x5 −
9425x4+264880x3− 448107x2+233262x− 34578. Here, the boundary conditions are
y(0) = 0 and y(1) = 0. It can be easily verified that the exact solution is

y(x) = x5 − 29

10
x4 +

76

25
x3 − 339

250
x2 +

27

125
x.

The absolute errors are obtained in Table 1 for different values of N using the pre-
sented method. Also, Figure 1 shows the plot of absolute error with N = 40, 50.

Example 3. In our third example, we consider the equation [6]

y(2) + y(3/2) + y = 2 +
√
x/π + x2, x ∈ [0, 1],
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Figure 1. Plot of the absolute error with N = 40 (left) and N = 50
(right) for Example 2.

with the boundary conditions y(0) = 0 and y(1) = 1. The exact solution of this
problem is given by y(x) = x2. Figure 2 shows the plot of absolute error with N = 32
and N = 64 using the presented method. Of course the accuracy of our method can
be improved by increasing N .

Table 1. Absolute errors for different values of N for Example 2.

x N = 8 N = 16 N = 32 N = 64
0.1 2.90× 10−3 2.96× 10−4 1.36× 10−6 3.92× 10−9

0.2 9.92× 10−4 4.78× 10−4 4.17× 10−6 4.59× 10−9

0.3 2.18× 10−4 6.26× 10−4 1.36× 10−6 4.16× 10−9

0.4 3.83× 10−4 9.04× 10−4 5.30× 10−6 4.12× 10−9

0.5 1.36× 10−3 1.13× 10−3 3.41× 10−6 3.87× 10−9

0.6 1.88× 10−3 1.18× 10−3 3.19× 10−7 3.82× 10−9

0.7 1.83× 10−3 1.03× 10−3 2.17× 10−6 4.54× 10−9

0.8 1.32× 10−3 7.44× 10−4 2.74× 10−6 4.78× 10−9

0.9 6.17× 10−4 3.79× 10−4 1.65× 10−6 3.16× 10−9

5. Conclusion

In this work, we employed the sinc method for solving the Bagley-Torvik equation.
Properties of the sinc function are utilized to reduce the computation of this problem
to some algebraic equations. The method is computationally attractive and applica-
tions are demonstrated through illustrative examples. The obtained results showed
that this approach can solve the problem effectively.
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Figure 2. Plot of the absolute error with N = 32 (left) and N = 64
(right) for Example 3.
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