تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,535 |
تعداد دریافت فایل اصل مقاله | 15,213,645 |
پیشبینی سطح آب زیرزمینی با استفاده از مدلهای منطق فازی، شبکه عصبی و سری زمانی | ||
هیدروژئولوژی | ||
مقاله 7، دوره 3، شماره 2، اسفند 1397، صفحه 69-81 اصل مقاله (974.45 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hydro.2019.5856 | ||
نویسندگان | ||
بهزاد سعیدی رضوی1؛ علیرضا عرب* 2 | ||
1استادیار پژوهشی گروه پژوهشی ساختمانی و معدنی پژوهشگاه استاندارد | ||
2کارشناس ارشد مهندسی آب | ||
چکیده | ||
در مطالعات آبهای زیرزمینی، تغییرات سطح ایستابى از اهمیت فراوانی برخوردار است. به همین دلیل، امروزه شبیهسازی جریان آب زیرزمینی توسط مدلهای ریاضی و کامپیوتری که یک روش غیرمستقیم مطالعه آب زیرزمینی میّباشد، با صرف هزینه کمتر صورت میگیرد. پیشبینی سطح آب زیرزمینی یک حوضه نقش مهمی را در مدیریت منابع آبی ایفا میکند. بهخصوص در مناطق نیمهخشک آبهای زیرزمینی نقش بسیار مهمی در تعیین آب مورد نیاز، کشاورزی، شهری و امور صنعتی دارد. در این تحقیق کارایی مدلهای شبکههای عصبی مصنوعی، منطق فازی و سری زمانی در تخمین سطح آب زیرزمینی آبخوان دشت عجبشیر مورد بررسی قرار گرفت. پارامترهای بارندگی، دما، دبی جریان و تراز سطح ایستابی در دوره زمانی ماه قبل بهعنوان ورودی و تراز سطح ایستابی در دوره موردنظر بهعنوان خروجی مدلها در مقیاس زمانی ماهانه در طی دوره آماری (1396-1385) انتخاب گردید. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا و میانگین قدر مطلق خطا برای ارزیابی و نیز مقایسه عملکرد مدلها مورد استفاده قرار گرفت. نتایج حاصله نشان داد که مدل منطق فازی میتواند تراز سطح ایستابی را با دقت قابل قبولی پیشبینی نماید. توابع عضویت استفاده شده برای مدلسازی فازی سطح ایستابی، تابع عضویت گوسی بود که به دادههای دستهبندی شده برازش داده شد و نیز تابع عضویت خروجی مدل ساگنو تابعی است خطی که بر اساس ورودیها ساخته میشود. در مورد دقت، مدل منطق فازی با بیشترین با ضریب همبستگی، کمترین ریشه میانگین مربعات خطا و میانگین قدر مطلق خطا به عنوان بهترین مدل برای پیشبینی سطح آب زیرزمینی شناخته شد. | ||
کلیدواژهها | ||
سطح ایستابی؛ شبکههای عصبی؛ منطق فازی؛ سری زمانی | ||
مراجع | ||
عزیزی، ق. 1384. بررسی خشکسالیها، ترسالیها و امکان پیشبینی آنها با استفاده از مدل سری زمانی در استان هرمزگان. فصلنامه تحقیقات جغرافیایی. شماره 63 – 4. نکوآمال کرمانی، م.، میرعباسی نجف آبادی، ر.، 1395. ارزیابی روش های درون یابی در تخمین سطح آب زمینی (مطالعه موردی: دشت سرخون)، مجله هیدروژئولوژی، دوره 2، 1396، 95-84. نیرومند، ح.، بزرگنیا، ا. 1372. مقدمهای بر سریهای زمانی(ترجمه). انتشارات دانشگاه فردوسی مشهد. 289ص. میانآبادی، ح.، افشار، ع. 1378. کاربرد سریهای زمانی ماهانه پریودیک در تولید رواناب ماهانه و مدیریت یکپارچه منابع آب حوضه کشف رود. سومین کنفرانس مدیریت منابع آب ایران، تبریز، ایران. Abarashi, F., Moftah Heghi, M., Sani Khani, H., Dehghani, A.A. 2014. Comparison of performance of three intelligent methods in order to predict static level fluctuations (Case study: Zerling plain). Water and Soil Conservation Studies. 21(1): 163-180.Adamowski, J., Chan, H., 2011. A wavelet neural network conjunction model for groundwater level forecasting. Water Resources Management journal. 407(1-4): 28-40. Chitsazan, M., Rahmani, G., Neyamadpour, A., 2013. Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran. Journal of Geope. 3(1): 35-46. Moosavi, V., Vafakhah, M., Shirmohammadi, B., Behnia, N., 2013. A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods. Water Resources Management journal. 27(5): 1301-1321. Pourmohammadi, S., Malekinejad, H., Pourshriyati, R. 2013. Comparison of the Efficiency of Neural Network Techniques and Time Series in Groundwater Forecasting (Case Study: Bakhtegan Basin of Fars Province). Water and Soil Conservation. 20(4): 251-262. Khasheiy Siyuki, A., Ghahreman, B., Koochakzade, M. 2012. Comparison of Artificial Neural Network Models, ANFIS and Regression in Estimating the Staging Level of the Aquifer in Neishabour Plain. Irrigation and drainage of Iran. =7: 10-22. Nadiri, A., Asgharimghdam, A., Abghari, H., Fijani, A. 2012. Development of composite artificial intelligence models in the estimation of aquifer transferability, Case study: Tasuj plain. Iranian Water Resources Research. 9: 1-14. ASCE. 2000. Task Committee on Application of Artificial Neural Networks in Hydrology, Part I and II. Journal of Hydrology. 5(2): 115-137. Daliakopoulos, I.N., Coulibaly, P., Tsanis, I.K. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology. 309(4): 229-240. Demuth, H., Beale, M. 2000. Neural Network Toolbox User, s Guide,By the Math Works. Inc Version. 4: 840pp. Dixon, B.A. 2010. Case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N. Journal of Hydrogeology. 17(6): 1507–20. Feng, S., Kang, S., Huo, Z., Chen, S., Mao, X. 2008. Neural networks to simulate regional groundwater levels affected by human activities. Groundwater. 46(1): 80-90. Hopfield, J.J. 1982. Neural network and physical systems with emergent collective computational abilities. Proc. Nat, Academy of scientists. 79: 2554-2558. Nadiri, A., Chitsazan, N., Tsai, F.T.-C., Asghari Moghaddam, A. 2014. Bayesian artificial intelligence model averaging for hydraulic conductivity estimation. Journal of Hydrologic Engineering. 19(3): 520-532. Norouzi, H., Asghari Mogaddam, A. and Nadiri, A.A. 2016. Determining vulnerable areas of Malikan Plain Aquifer for Nitrate, Using Random Forest method. Journal of Environmental Studies. 41(4): 923-94. Norouzi, H., Nadiri, A.A., Moghaddam, A.A., Gharekhani, M. 2018. Comparing Performans of Fuzzy Logic, Artificial Neural Network and Random Forest Models in Transmissivity Estimation of Malekan Plain Aquifer, Journal of ecohydrology. 5(3): 739-751. doi.org/10.22059/ije.2018.239914.707 Philip Plumb, A., Rowe, R.C., York, P., Brown, M. 2005. Optimisation of the predictive ability of artificial neural network (ANN) models: A comparison of three ANN programs and four classes of training algorithm. European Journal of Pharmaceutical Sciences. 25(5): 395–405. Rani Sethi, R., Kumar, A., Sharma, S.P., Verma, H.C. 2010. Prediction of water table depth in a hard rock basin by using artificial neural network. International Journal of Water Resources and Environmental Engineering. 2(4): 95-102. Tayfur, G., Nadiri, A., Asghari Moghaddam, A. 2014. Supervised intelligent committee machine method for hydraulic conductivity estimation. Water Resources Management. 28: 1173–1184. Capilla, C. 2008. Time series analysis and identification of trends in a Mediterraneanurban area, Global and Planetary Change. 63: 275–281. | ||
آمار تعداد مشاهده مقاله: 1,433 تعداد دریافت فایل اصل مقاله: 714 |