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Abstract This work is devoted to the study of global solution for initial value problem of
interval fractional integro-differential equations involving Caputo-Fabrizio fractional

derivative without singular kernel admitting only the existence of a lower solution
or an upper solution. Our method is based on fixed point in partially ordered sets.
In this study, we guaranty the existence of special kind of interval H-difference that
we will be faced it under weak conditions. The method is illustrated by an example.
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1. Introduction

The theory of fractional differential equations has attracted more attention in the
last decades because of their applications in different fields of sciences (see e.g. [12,
16]). This theory is making use of the derivatives of fractional orders such as Riemann-
Liouville, Caputo, Grünwal-Letnikov and etc. Recently Caputo and Fabrizio in [9]
have presented the new definition of fractional derivative in where they have replaced a
nonsingular kernel exp(− q

1−q (t−s)) instead of the singular kernel (t−s)−q. We believe

that the large number of fractional derivatives does not constitute a disadvantage,
since they can be used in different models which provide the best reflection of the
behavior of the system. In many simultaneously occurring processes in modeling of
the real world phenomena to obtain data, the field observations are needed. The
modeling of a dynamical system based on the field observations becomes uncertain
and vagueness or fuzziness, which is inherent in the systems behavior rather than
being purely random or deterministic. The study of interval and fuzzy differential
equations is an area of mathematics that has recently received a lot of attention
(see e.g. [4, 11, 17, 18, 19, 20]). Recently, there are some papers dealing with the
existence of solution for nonlinear set valued and fuzzy fractional differential equations
whose methods are based on the monotone method, the method of upper and lower
solutions and fixed point theorems [1, 2, 5, 6, 7, 10, 17]. Among of them, we can
find results on existence of solution for fuzzy differential equations in presence of
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both lower and upper solutions relative to the problem considered. The contraction
mapping theorem and the abstract monotone iterative technique are well known and
are applicable to a variety of situations. Recently, there is a fixed point theorem
to weaken the requirement on the contraction by considering metric spaces endowed
with partial order. The existence of a unique fixed point is based on assuming that
the operator considered is monotone in such a setting [14, 15, 21].
In this study, we consider the following interval fractional integro-differential equation
involving Caputo-Fabrizio fractional derivative of order 0 < q < 1

CFDqu(t) = g(t) +

∫ t

0

f(t, s, u(s))ds, ∀ t ∈ J,

u(0) = u0 ∈ K, (1.1)

where J = [0, b], g ∈ C(J,K), f ∈ C(J × J × K,K) and CFDqu denotes interval
Caputo-Fabrizio fractional derivative of order q.
Here, we consider just only a lower solution or an upper solution for the above interval
initial value problem and use fixed point in partially ordered sets to prove the existence
results. This approach allows us to weaken the assumptions on the function f where
Problem (1.1) is under consideration. It is worth noting that the strategies of this
work is based on overcoming some difficulties mentioned below. Firstly one of the
main concerns related to interval and fuzzy differential equations is the existence of H-
differences appeared in the problem being investigated. In this study, we guaranty the
existence of such interval H-differences under weak conditions. Secondly applying such
fixed point gives us a local solution. Here we divide the interval [0, b] to subintervals
and use the fixed point on the subintervals and then make the global solution on
entire [0, b] by using the obtained local solutions.
The paper is organized as follows. In Section 2, we introduce some basic knowledge
for interval number and interval valued functions and state fixed point theorem in the
partially ordered set. In Section 3, we state the main problem and define concept of
Caputo-Fabrizio fractional derivative for interval space. Moreover, in this section we
define three kind of solutions for our problem. We devote subsections 3.1-3.3 to the
main theorems of existence and uniqueness of solutions for Problem (1.1).

2. Preliminaries

In this section, we gather together some definitions and results from the literature,
which we will use throughout this paper.

K denotes the spaces of nonempty compact and convex sets of the real line R. For
A ∈ K, we have A = [a−, a+] where a− ≤ a+. We denote the width of an interval A
by len(A) = a+ − a−. Given two intervals A,B ∈ K and k ∈ R, addition and scalar
multiplication are defined by A+B = [a− + b−, a+ + b+] and

kA =

{
[ka−, ka+], k ≥ 0
[ka+, ka−], k < 0.

Difference is defined as A − B = A + (−1)B. It is well known that addition is
associative and commutative and with neutral element {0}. If A,B ∈ K, and if there
exists a unique interval C ∈ K such that B+C = A, then C is called the H-difference
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of A, B and is denoted by A⊖B (see e.g. [19]). For intervals A,B ∈ K the Hausdorff
distance is defined as usual by

D(A,B) = max{|a− − b−|, |a+ − b+|}.
The following properties of distance D are well-known (see e.g. [22])
For all A,B,C,E ∈ K and λ ∈ R, we have

D(A+B,A+ C) = D(B,C),

D(λA, λB) = |λ|D(A,B), ∀λ ∈ R,
D(A+B,C + E) ≤ D(A,C) +D(B,E),

and (K, D) is a complete metric space.
We recall that if F : [a, b] → K is an interval-valued function such that F (t) =
[f−(t), f+(t)], then limt→t0 F (t) exists, if and only if limt→t0f

−(t) and limt→t0f
+(t)

exist as finite numbers. In this case, we have

lim
t→t0

F (t) = [ lim
t→t0

f−(t), lim
t→t0

f+(t)].

In particular, F is continuous if and only if f− and f+ are continuous.

Definition 2.1. (See e.g. [19]) Let F : (a, b) → K and x0 ∈ (a, b). We say f is
strongly generalized differentiable at x0, if there exists an element F ′(x0) ∈ K, such
that for all h > 0 sufficiently small,
(i) there exist F (x0 + h)⊖ F (x0), F (x0)⊖ F (x0 − h) and

lim
h↘0

F (x0 + h)⊖ F (x0)

h
= lim

h↘0

F (x0)⊖ F (x0 − h)

h
= F ′(x0),

or (ii) there exist F (x0)⊖ F (x0 + h), F (x0 − h)⊖ F (x0) and

lim
h↘0

F (x0)⊖ F (x0 + h)

−h
= lim

h↘0

F (x0 − h)⊖ F (x0)

−h
= F ′(x0),

or (iii) there exist F (x0 + h)⊖ F (x0), F (x0 − h)⊖ F (x0) and

lim
h↘0

F (x0 + h)⊖ F (x0)

h
= lim

h↘0

F (x0 − h)⊖ F (x0)

−h
= F ′(x0),

or (iv) there exist F (x0)⊖ F (x0 + h), F (x0)⊖ F (x0 − h) and

lim
h↘0

F (x0)⊖ F (x0 + h)

−h
= lim

h↘0

F (x0)⊖ F (x0 − h)

h
= F ′(x0).

Remark 2.2. We say that a function is (i)- differentiable if it is differentiable as the
case (i) of the definition above, etc.

Lemma 2.3. (See [20].) Let F : (a, b) → K be a strongly generalized differentiable
interval function such that F (t) = [f−(t), f+(t)].

(1) If F is (i)-differentiable, then f−, f+ are differentiable functions and

F ′(t) = [(f−)′(t), (f+)′(t)].

(2) If F is (ii)-differentiable, then f−, f+ are differentiable functions and

F ′(t) = [(f+)′(t), (f−)′(t)].
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Throughout this paper, we consider J = [a, b] and we shall use the notation

C(J,K) = { F : J → K| F is continuous},
where the continuity is one-side at endpoints a, b. Also for k = 1, 2

C1
(i)(J,K) = {F : J → K| F is (i)-differentiable and F ′ is continuous},

C1
(ii)(J,K) = {F : J → K| F is (ii)-differentiable and F ′ is continuous}.

Define for F,G ∈ C(J,K)

H(F,G) = sup
t∈J

D(F (t), G(t)).

Remark 2.4. (C(J,K),H) is a metric space.

Let F : [a, b] → K be an interval-valued function such that F (t) = [f−(t), f+(t)]
and f− and f+ are measurable and Lebesgue integrable on [a, b]. Then we define∫ b

a
F (t)dt by∫ b

a

F (t)dt =

[∫ b

a

f−(t)dt,

∫ b

a

f+(t)dt

]
,

and we say that F is Lebesgue integrable on [a,b].

Lemma 2.5. ( See [22].) Let F : [a, b] → K be a continuous interval-valued function.
Then G(x) =

∫ x

a
F (t)dt is (i)-differentiable and we have G′(x) = F (x).

Lemma 2.6. (See [20].) Let F : [a, b] → K be (i)-differentiable and C is an inter-
val.Then C + F is (i)-differentiable and C ⊖ f is (ii)-differentiable.

Throughout this work, we use the following partial ordering(see e.g. [18]).

Definition 2.7. Suppose x, y ∈ K. We say that x ≼ y if and only if

x− ≤ y−, and x+ ≤ y+.

Let h1, h2 ∈ C(J,K) be two interval functions, we say that h1 ≼ h2 if h1(t) ≼ h2(t)
for t ∈ J (j = 1, 2).

We recall some properties on the partial ordering ≼ in space of interval functions,
which are useful to our procedure.

Lemma 2.8. (See [18].) Let x, y, z, w ∈ K and c ∈ R, c > 0, j = 1, 2.

• x = y if and only if x ≼ y and x ≥j y.
• If x ≼ y, then x+ z ≼ y + z.
• If x ≼ y and z ≼ w, then x+ z ≼ y + w.
• If x ≼ y, then cx ≼ cy.

Lemma 2.9. (See [18].) Let g, h ∈ C(J,K) and g ≼ h, then∫ t

a

g(s)ds ≼
∫ t

a

h(s)ds, ∀t ∈ J.



16 R. ALIKHANI

Definition 2.10. Let (X,≤) be a partially ordered set and f : X → X. We say that
f is monotone nondecreasing in x if for any x, y ∈ X,

x ≼ y ⇒ f(x) ≼ f(y)

and is monotone nonincreasing in y, if

x ≼ y ⇒ f(x) ≽ f(y).

Throughout this study we will use the following fixed point theorem in the partially
ordered set.

Theorem 2.11. (See [14, 15].) Let (X,≤) be a partially ordered set and suppose that
d be a metric on X such that (X, d) is a complete metric space. Furthermore, let
T : X → X be a monotone nondecreasing mapping such that

∃ 0 ≤ k < 1 ∋ d(T (x), T (y)) ≤ kd(x, y), ∀x ≥ y.

Suppose that either T is continuous or X is such that if {xn} → x is a nondecreasing
(or respectively nonincreasing) sequence in X, then xn ≤ x (or respectively xn ≥ x)
for every n ∈ N. If there exists x0 ∈ X comparable to T (x0), then T has a fixed point
x̄ and limn→∞ Tn(x0) = x̄.

The following lemma shows that a part of assumptions of Theorem 2.11 by consid-
ering X = C(J,K) is satisfied.

Lemma 2.12. If a nondecreasing (or nonincreasing) sequence fn → f in C(J,K),
then fn ≼ f (or fn ≽ f), ∀n respectively.

Proof. Since fn is nondecreasing sequence in C(J,K), fn(t) is nondecreasing sequence
in K for t ∈ J . Also we have

f−1 (t) ≼ ... ≼ f−n (t) ≼ ....

Hence f−n (t) is a nondecreasing sequence that converges to f−(t) in R. Therefore
f−n (t) ≼ f−(t) for every n. Similarly we conclude f+n (t) ≼ f+(t) for every n. Thus
fn ≼ f for every n. Also, the similar result can be conclude for nonincreasing function.

�

The following lemma guaranties the existence of special kind of H-difference under
some conditions that we will be faced it.

Lemma 2.13. Let x ∈ K and f : [a, b] → K be continuous with respect to t. If
x ∈ K \ R i.e. x− < x+ or if x ∈ R and f(t) ∈ R for all t ∈ [a, b], then there exists
h > a such that the H-difference

x⊖
∫ t

a

f(s)ds,

exists for any t ∈ [a, h].
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Proof. The proof is given in [8] in fuzzy space. We give it for our special case in

intervals space. In order to prove the existence of x ⊖
∫ t

a
f(s)ds, we have to prove

that [x− −
∫ t

a
f−(s)ds, x+ −

∫ t

a
f+(s)ds] is an interval. Therefore we have to check∫ t

a

f+(s)ds−
∫ t

a

f−(s)ds ≤ x+ − x−.

The above condition is equivalent to∫ t

a

len(f(s))ds ≤ len(x).

By continuity of f , there exists M > 0 such that len(f(t)) ≤M for all t ∈ [a, b]. Now

suppose x ∈ K \ R and t ∈ [a, a+ len(x)
M ], thus we have∫ t

a

len(f(s))ds ≤M(t− a) ≤ len(x).

If x, f(t) ∈ R for all t ∈ [a, b], then len(x) = len(f(t)) = 0 for all t ∈ [a, b]. �

3. Interval Caputo-Fabrizio fractional integro-differential equations

To avoid of complications and for reduction of sentences, we investigate the follow-
ing initial value problem for interval fractional integro-differential equation without
singular kernel of order 0 < q < 1

CFDqu(t) =

∫ t

0

f(t, s, u(s))ds, ∀ t ∈ J,

u(0) = u0 ∈ K, (3.1)

where J = [0, b], f ∈ C(J × J × K,K) and CFDqu denotes interval Caputo-Fabrizio
fractional derivative of order q introduced in below. We note that the method for
Problem (1.1) is similar to Problem (3.1).

Definition 3.1. (Interval Caputo-Fabrizio fractional differential of order q)

(i) Let u ∈ C1
(i)(J,K) and 0 < q < 1. We say that u is (i)-Caputo-Fabrizio

fractional differentiable of order q at t ∈ J if there exists an CFDqu(t) ∈ K
such that

CFDqu(t) =
1

1− q

∫ t

0

exp(− q

1− q
(t− s))u′(s)ds.

(ii) Let u ∈ C1
(ii)(J,K) and 0 < q < 1. We say that u is (ii)-Caputo-Fabrizio

fractional differentiable of order q at t ∈ J if there exists an CFDqu(t) ∈ RF
such that

CFDqu(t) =
1

1− q

∫ t

0

exp(− q

1− q
(t− s))u′(s)ds.

The purpose of the current section is finding solutions u ∈ C1(J,K) of Problem
(3.1), which are defined as below. We give the concept of a solution for Problem (3.1),
in ways that the solutions can have different kinds of strongly generalized differentia-
bility on subintervals of some partition into J .
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Definition 3.2. We say that u ∈ C1
(i)(J,K) is (i)-solution of Problem(3.1), if u

satisfies Problem (3.1).

Definition 3.3. We say that u ∈ C1
(ii)(J,K) is (ii)-solution of Problem (3.1), if u

satisfies Problem (3.1).

Definition 3.4. We say that u is (ii,i)-solution of Problem (3.1), if there exists
c ∈ (0, b) such that u is (ii)-solution on [0, c] and (i)-solution on (c, b].

Remark 3.5. Authors in [3] have called (i)-solution and (ii)-solution as proper solu-
tions and also (ii,i)-solution as mixed solution.

Lemma 3.6. Problem (3.1) is equivalent to one of the following integral equations
systems

(F1) u(t) = u0 + (1− q)

∫ t

0

f(t, s, u(s))ds+ q

∫ t

0

∫ s

0

f(s, r, u(r))drds,

if u is (i)-Caputo-Fabrizio fractional differentiable of order q on J .

(F2) u(t) = u0 ⊖ (−1)

(
(1− q)

∫ t

0

f(t, s, u(s))ds+ q

∫ t

0

∫ s

0

f(s, r, u(r))drds

)
,

if u is (ii)-Caputo-Fabrizio fractional differentiable of order q on J .

(F3) u(t) ={
u0 ⊖ (−1) · ((1− q)

∫ t

0
f(t, s, u(s))ds+ q

∫ t

0

∫ s

0
f(s, r, u(r))drds), t ∈ [0, c∗],

u(c∗) +
∫ t

c∗
f(t, s, u(s))ds+

∫ t

c∗

∫ s

0
f(s, r, u(r))drds, t ∈ [c∗, b],

if u is both (ii)-differentiable on [0, c∗] and (i)-differentiable on [c∗, b].

Proof. Let u(t) = [u−(t), u+(t)] be the (i)-solution of Problem (3.1). u is (i)-differentiable,

then by Lemma 2.3, u′(t) = [u−
′
(t), u+

′
(t)]. Therefore we have for all t ∈ J

CFDqu±(t) =
1

1− q

∫ t

0

exp(− q

1− q
(t− s))u±

′
(s)ds =

∫ t

0

(f(t, s, u(s)))±ds,

and also (u(0))± = u±0 . By applying Laplace transform for the above crisp problem
(see e.g. [13]), we have for all t ∈ J

u±(t) = u±0 + (1− q)

∫ t

0

(f(t, s, u(s)))±ds+ q

∫ t

0

∫ s

0

(f(s, r, u(r)))±drds.

Then we arrive at integral equation (F1). To prove the inverse, by Lemmas 2.5 and
2.6, we conclude u in (F1) belongs to C

1
(i)(J,K) and clearly satisfies Problem (3.1).

Now let u(t) = [u−(t), u+(t)] be the (ii)-solution of Problem (3.1). u is (ii)-differentiable,

then by Lemma 2.3, u′(t) = [u+
′
(t), u−

′
(t)]. Therefore we have for all t ∈ J

CFDqu±(t) =
1

1− q

∫ t

0

exp(− q

1− q
(t− s))u∓

′
(s)ds =

∫ t

0

(f(t, s, u(s)))±ds,
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and also (u(0))± = u±0 . Applying Laplace transform, we have for all t ∈ J

u∓(t) = u∓0 + (1− q)

∫ t

0

(f(t, s, u(s)))±ds+ q

∫ t

0

∫ s

0

(f(s, r, u(r)))±drds.

Then we arrive at the equation (F2). Inversely, by Lemmas 2.5 and 2.6, u obtained
by (F2) is in C

1
(ii)(J,K) and it is clear that u satisfies Problem (3.1). The rest of the

proof can be conclude in the similar trend with Lemma 3.2 in [3]. �

Remark 3.7. The equivalence between two equations means that any solution of an
equation is a solution for the other one. Moreover, the continuous solution, obtained
of integral equations (F1) is corresponding to the (i)-solution, (F2) is corresponding
to the (ii)-solutions and (F3) is corresponding to the (ii,i)-solution of Problem (3.1).

3.1. Existence of (i)-solution. Now we define the nonlinear mappingsA : C(J,K) →
C(J,K), related to (F1), which plays a main role in our discussion, as following

[Aϕ](t) = u0 + (1− q)

∫ t

0

f(t, s, ϕ(s))ds+ q

∫ t

0

∫ s

0

f(s, r, ϕ(r))drds, (3.2)

Now we define upper and lower solution for Problem (3.1) as following:

Definition 3.8. Let u, ū ∈ C(J,K), we say that
(a) u is a lower solution for Problem (3.1) if

u(t) ≼ [Au](t), t ∈ J,

(b) u is an upper solution for Problem (3.1) if

u(t) ≽ [Au](t), t ∈ J.

In the following theorem, we state our main results. We apply fixed point Theorem
2.11 to prove the existence and uniqueness of global solution belonging to C1

(i)(J,K)

for the interval initial value Problem (3.1) by the existence of just a lower solution or
an upper solution.

Theorem 3.9. Consider Problem (3.1) with f continuous and suppose f is nonde-
creasing in the last argument. Let exists a constant real number l > 0 such that

D(f(t, s, x), f(t, s, y)) ≤ lD(x, y), ∀t, s ∈ J,

for x ≽ y. Then the existence of a lower solution u (or an upper solution u) for
Problem (3.1) provides the existence of a fixed point for A like u, and consequently (i)-
solution to Problem (3.1) on [0, b]. Also, limn→∞ An(u) = u (or limn→∞ An(u) = u).
Moreover, if w ∈ C(J,K) is another fixed point of A such that is comparable to u,
then u = w.

Proof. Since by Lemma 3.6, Problem (3.1) is equivalent to (F1), we prove that the
mapping A has a unique fixed point under assumption the existence a lower solution
u for Problem (3.1). Because of similarity we omit the proof under assumption the
existence of upper solution. Now we check that hypotheses in Theorem 2.11 are
satisfied.
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We consider X = C(J,K) that is partially ordered set by the following order relation
For g, f ∈ C(J,K),

g ≼ f ⇔ g(t) ≼ f(t), ∀t ∈ J.

Since f is nondecreasing in its last arguments, the mapping A, defined by (3.2),
is nondecreasing on J . Obviously there exists c > 0 such that b

c = N ∈ N and

lc+ l c
2

2 < 1. Firstly We consider the interval [0, c]. For ϕ ≥j ψ, we have

D([Aϕ](t), [Aψ](t)) ≤ (1− q)

∫ t

0

D(f(s, ϕ(s)), f(s, ψ(s)))ds

+ q

∫ t

0

∫ s

0

D(f(s, r, ϕ(r)), f(s, r, ψ(r)))drds

≤ l(1− q)cH(ϕ, ψ) + lq
c2

2
H(ϕ, ψ).

Then we have

H(Aϕ,Aψ) ≤ LH(ϕ, ψ), (3.3)

where L = l(1 − q)c + lq c2

2 < 1. Applying Theorem 2.11, A has a fixed point
u ∈ C([0, c],K) and limn→∞ An(u) = u (or limn→∞ An(u) = u). Now suppose
w ∈ C([0, c],K) is another fixed point of A such that is comparable to u. It means
that u ≼ w or w ≼ u. We claim that H(u, w) = 0. Employing the nondecreasing
property of the mapping A, along with Lemma 2.12 and u ≼ A, we can infer u ≼ u.
Then Anu is comparable to Anu = u and Anw = w for n = 0, 1, 2, .... Utilizing (3.3)
we have

H(u, w) = H(Anu,Anw) ≤ H(Anu,Anu) +H(Anw,Anu)

≤ LnH(u, u) + LnH(u,w).

Since L < 1, the right-hand side of above equation converges to zero as n→ ∞. Then
H(u, w) = 0. It means that the fixed point is unique on [0, c]. Now by considering u
as a fixed point for A on the interval [0, c], we define another mapping on the interval
[c, 2c] as follows:

[T ϕ](t) = u(c) + q

∫ t

c

∫ c

0

f(s, r,u(r))drds+ (1− q)

∫ t

c

f(t, s, ϕ(s)ds

+ q

∫ t

c

∫ s

c

f(s, r, ϕ(r))drds.

Since f is nondecreasing in its last argument, the mapping T : C([c, 2c],K) →
C([c, 2c],K) is nondecreasing. Now we will show that u(t) ≼ [T u](t) (or u(t) ≽
[T u](t)) for t ∈ [c, 2c]. Due the fact that u is a lower solution of Problem (3.1) for
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t ∈ [0, b] and u ≼ u for t ∈ [0, c], we have

u ≼ u0 + (1− q)

∫ t

0

f(t, s, u(s))ds+ q

∫ t

0

∫ s

0

f(s, r, u(r))drds,

= u0 + (1− q)

∫ c

0

f(t, s, u(s))ds+ q

∫ c

0

∫ s

0

f(s, r, u(r))drds

+(1− q)

∫ t

c

f(t, s, u(s))ds+ q

∫ t

c

∫ s

0

f(s, r, u(r))drds,

≼ u0 + (1− q)

∫ c

0

f(t, s,u(s))ds+ q

∫ c

0

∫ s

0

f(s, r,u(r))drds

+(1− q)

∫ t

c

f(t, s, u(s))ds+ q

∫ t

c

∫ s

0

f(s, r, u(r))drds,

= u(c) + (1− q)

∫ t

c

f(t, s, u(s))ds+ q

∫ t

c

∫ s

0

f(s, r, u(r))drds,

= u(c) + (1− q)

∫ t

c

f(t, s, u(s))ds+ q

∫ t

c

∫ c

0

f(s, r, u(r))drds

+q

∫ t

c

∫ s

c

f(s, r, u(r))drds,

≼ u(c) + (1− q)

∫ t

c

f(t, s, u(s))ds+ q

∫ t

c

∫ c

0

f(s, r,u(r))drds

+q

∫ t

c

∫ s

c

f(s, r, u(r))drds,

= [T u](t).

For ϕ ≼ ψ, we conclude

D([T ϕ](t), [T ψ](t)) ≤ (1− q)

∫ t

c

D(f(t, s, ϕ(s)), f(t, s, ψ(s)))ds

+ q

∫ t

c

∫ s

c

D(f(s, r, ϕ(r)), f(s, r, ψ(r)))drds

≤ l(1− q)cH(ϕ, ψ) + lq
c2

2
H(ϕ, ψ).

Then we have

H(T ϕ, T ψ) ≤ LH(ϕ, ψ),

where L = l(1 − q)c + lq c2

2 } < 1. All the conditions in Theorem 2.11 are satisfied,
therefore the mapping T has a fixed point v ∈ C([c, 2c],K) and limn→∞ T n(u) = v.
If we suppose w ∈ C([c, 2c],K) is another fixed point of T such that is comparable to
u on [c, 2c], then it is clear that H(v, w) = 0.
Obviously u as defined

u =

{
u, t ∈ [0, c],
v, t ∈ [c, 2c],



22 R. ALIKHANI

is a fixed point of A defined by (3.2) on [0, 2c]. By Lemma 2.6, u is (i)-differentiable
on [0, 2c]. In the same trend we can make a fixed point of A defined by (3.2) on
[0, Nc] = [0, b]. Let u ∈ C(J,K) is a fixed point of A where J = [0, b]. Therefore u is a
solution of integral equation (F1). By Remark 3.7, we can conclude u is a (i)-solution
of Problem (3.1).
Now suppose w ∈ C(J,K) is another fixed point of A such that is comparable to u
on J = [0, b]. It is clear that H(u,w) = 0.

�

3.2. Existence of (ii)-solution. Let x0 ∈ K. We denote by B̄(x0) = {x ∈ K :
len(x) ≤ len(x0)}, a closed subset in K. Now we are in a situation to define the
nonlinear mappings B (related to (F2)), which plays a main role in our discussion, as
following

[Bϕ](t) = u0 ⊖ (−1)((1− q)

∫ t

0

f(t, s, ϕ(s))ds+ q

∫ t

0

∫ s

0

f(s, r, ϕ(r))drds), (3.4)

where t ∈ J . In general the B : C(J,K) → C(J,K) is not well-defined. The following
lemma guaranties the existence of H-differences involving in the mapping B.

Lemma 3.10. Let u0 ∈ K \ R and len(f(t, s, x)) for all x ∈ B̄(u0), ∀t, s ∈ [0, b]
are bounded. Then there exists c∗ > 0 such that the mapping B : C([0, c∗], B̄(u0)) →
C([0, c∗], B̄(u0)) is well-defined.

Proof. Let len(f(t, s, x)) ≤ M for all x ∈ B̄(u0), ∀t, s ∈ [0, b]. By Lemma 2.13, for

t ∈ [0, 2len(u0)
M(2(1−q)+bq) ], we can conclude

(1− q)

∫ t

0

len(f(t, s, ϕ(s)))ds + q

∫ t

0

∫ s

0

len(f(s, r, ϕ(r)))drds

≤ M((1− q)t+ q
t2

2
) ≤ len(u0). (3.5)

Let consider c∗ = min{( 2len(u0)
M(2(1−q)+bq) , b}. Then from the relations (3.5), H-differences

involving in the mapping B exist on t ∈ [0, c∗]. �

Definition 3.11. Let u, ū ∈ C([0, c∗], B̄(u0)), we say that
(a) u is a lower solution for Problem (3.1) if

u(t) ≼ [Bu](t), t ∈ [0, c∗],

(b) ū is an upper solution for Problem (3.1) if

ū(t) ≽ [Bū](t), t ∈ [0, c∗].

Remark 3.12. If u0 ∈ K \ R, then Definition 3.11 is well-defined.

Theorem 3.13. Consider Problem (3.1) with f continuous and suppose f is nonde-
creasing in last argument. Let u0 ∈ K\R and len(f(t, s, x)) for all x ∈ B̄(u0), ∀t, s ∈
[0, b] is bounded with bound of M . Moreover, assume c∗ = min{ 2len(u0)

M(2(1−q)+bq) , b}. Let

exist l > 0 such that

D(f(t, s, x), f(t, s, y)) ≤ lD(x, y), ∀t ∈ [0, c∗],
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for x ≥1 y. Then the existence of a lower solution u (or an upper solution ū) for
Problem (3.1) provides the existence of a fixed point for B like u, and consequently (ii)-
solution to Problem (3.1) on [0, c∗]. Also, limn→∞ Bn(u) = u (or limn→∞ Bn(ū) = u).
Moreover, if w ∈ C([0, c∗], B̄(u0)) is another fixed point of B such that is comparable
to u in the partial ordering ≼, then u = w.

Proof. Since by Lemma 3.6, Problem (3.1) is equivalent to (F2), we prove that the
mapping B has a unique fixed point under assumption the existence a lower solution
u for Problem (3.1). Because of similarity we omit the proof under assumption the
existence of upper solution. Now we check that hypotheses in Theorem 2.11 are
satisfied.
We consider X = C([0, c∗], B̄(u0)) that is partially ordered set by the following order
relation For g, f ∈ C([0, c∗], B̄(u0)),

g ≼ f ⇔ g(t) ≼ f(t), ∀t ∈ [0, c∗].

Obviously there exists c > 0 such that c∗

c = N ∈ N and lc + l c
2

2 < 1. Firstly

We consider the interval [0, c]. By Lemma 3.10, the mapping B : C([0, c], B̄(u0)) →
C([0, c], B̄(u0)) defined by (3.4), is well-defined and since f is nondecreasing in its last
arguments, the mapping B is nondecreasing on [0, c]. For ϕ ≼ ψ, we have

D([Bϕ](t), [Bψ](t)) ≤ (1− q)

∫ t

0

D(f(t, s, ϕ(s)), f(t, s,Ψ(s)))ds

+ q

∫ t

0

∫ s

0

D(f(s, r, ϕ(r)), f(s, r, ψ(r)))drds

≤ l(1− q)cH(ϕ, ψ) + lq
c2

2
H(ϕ, ψ). (3.6)

Then from (3.6), we have

H(Bϕ,Bψ) ≤ LH(ϕ, ψ), (3.7)

where L = l(1 − q)c + lq c2

2 < 1. Applying Theorem 2.11, B has a fixed point u ∈
C([0, c], B̄(u0)) and limn→∞ Bn(u) = u (or limn→∞ Bn(u) = u). Now suppose w ∈
C([0, c], B̄(u0)) is another fixed point of B such that is comparable to u with respect
to partial ordering ≼. It means that u ≼ w or w ≼ u. We claim that H(u, w) = 0.
Employing the nondecreasing property of the mapping B, along with Lemma 2.12 and
u ≼ Bu, we can infer u ≼ u. Then Bnu is comparable to Bnu = u and Bnw = w for
n = 0, 1, 2, .... Utilizing (3.7) we have

H(u, w) = H(Bnu,Bnw) ≤ H(Bnu,Bnu) +H(Bnw,Bnu)

≤ LnH(u, u) + LnH(u,w).

Since L < 1, the right-hand side of above equation converges to zero as n→ ∞. Then
H(u, w) = 0. It means that the fixed point is unique on [0, c]
Now by considering u as a fixed point for B on the interval [0, c], we define another
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mapping on the interval [c, 2c] as follows:

[T ϕ](t) = u(c)⊖ (−1)(q

∫ t

c

∫ c

0

f(s, r,u(r))drds + (1− q)

∫ t

c

f(t, s, ϕ(s))ds

+ q

∫ t

c

∫ s

c

f(s, r, ϕ(r))drds).

The mapping T : C([c, 2c], B̄(u0)) → C([c, 2c], B̄(u0)) is well-defined, since for t ∈
[c, 2c] we have

q

∫ t

c

∫ c

0

len(f(s, r,u(r)))drds+ (1− q)

∫ t

c

len(f(t, s, ϕ(s)))ds

+ q

∫ t

c

∫ s

c

len(f(s, r, ϕ(r)))drds+ (1− q)

∫ c

0

(len(f(t, s,u(s)))ds

+ q

∫ c

0

∫ s

0

len(f(s, r,u(r)))drds

≤Mqc(t− c) +M(1− q)(t− c) +Mq
(t− c)2

2
+M(1− q)c+Mq

c2

2

= (1− q)Mt+Mq
t2

2
≤ c∗(M(1− q) +Mq

b

2
) ≤ len(u0).

Since f is nondecreasing in last its argument, the mapping

T : C([c, 2c], B̄(u0)) → C([c, 2c], B̄(u0)),

is nondecreasing too.
Now we will show that u(t) ≼ [T u](t) (or u(t) ≼ [T u](t)) for t ∈ [c, 2c]. Due the fact
that u is a lower solution of Problem (3.1) for t ∈ [0, b] and u ≼ u for t ∈ [0, c], we
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have

u ≼ [Bu](t) = u0 ⊖ (−1)((1− q)

∫ t

0

f(t, s, u(s))ds

+ q

∫ t

0

∫ s

0

f(s, r, u(r))drds),

= u0 ⊖ (−1)(1− q)(

∫ c

0

f(t, s, u(s))ds+

∫ t

c

f(t, s, u(s))ds)

⊖ (−1)q(

∫ c

0

∫ s

0

f(s, r, u(r))drds+

∫ t

c

∫ s

0

f(s, r, u(r))drds)

≼ u0 ⊖ (−1)((1− q)

∫ c

0

f(t, s,u(s))ds+ q

∫ c

0

∫ s

0

f(s, r,u(r))drds)

⊖ (−1)((1− q)

∫ t

c

f(t, s, u(s)ds+ q

∫ t

c

∫ s

0

f(s, r, u(r))drds)

= u(c)⊖ (−1)((1− q)

∫ t

c

f(t, s, u(s)ds+ q

∫ t

c

∫ s

0

f(s, r, u(r))drds)

= u(c)⊖ (−1)(q

∫ t

c

∫ c

0

f(s, r, u(r))drds+ (1− q)

∫ t

c

f(t, s, u(s))

+ q

∫ t

c

∫ s

c

f(s, r, u(r))drds)

≼ u(c)⊖ (−1)(q

∫ t

c

∫ c

a

f(s, r,u(r))drds+ (1− q)

∫ t

c

f(, ts, u(s)ds

+ q

∫ t

c

∫ s

c

f(s, r, u(r))drds)

= [T u](t).

For ϕ ≽ ψ, we conclude

D([T ϕ](t), [T Ψ](t)) ≤ (1− q)

∫ t

c

D(f(t, s, ϕ(s)), f(t, s, ψ(s)))ds

+ q

∫ t

c

∫ s

c

D(f(s, r, ϕ(r)), f(s, r, ψ(r)))drds

≤ lc(1− q)H(ϕ, ψ) + l
c2

2
qH(ϕ, ψ).

Then we have

H(T ϕ, T ψ) ≤ LH(ϕ, ψ), (3.8)

where L = lc(1 − q) + l c
2

2 q < 1. All the conditions in Theorem 2.11 are satisfied,

therefore the mapping T has a fixed point v ∈ C([c, 2c], B̄(u0)) × C([c, 2c], B̄(u0))
and limn→∞ T n(u) = v.
If we suppose w ∈ C([c, 2c], B̄(u0))×C([c, 2c], B̄(u0)) is another fixed point of T such



26 R. ALIKHANI

that is comparable to u on [c, 2c], then it is clear that H(v, w) = 0.
Obviously u as defined

u =

{
u, t ∈ [0, c],
v, t ∈ [c, 2c],

is a fixed point of B defined by (3.4) on [0, 2c]. By Lemma 2.6, u is (ii)-differentiable
on [0, 2c]. In the same trend we can make a fixed point of B defined by (3.4) on
[0, Nc] = [0, c∗]. Let u =∈ C([0, c∗], B̄(u0)) is a fixed point of B. Therefore u is a
solution of integral equation (F2). By Remark 3.7, we can conclude u is a (ii)-solution
of Problem (3.1).
Now suppose w ∈ C([0, c∗],K) is another fixed point of B such that is comparable to
u on [0, c∗]. It is clear that H(u,w) = 0. �
Remark 3.14. As before mentioned, our purpose of this work is investigation on
existence of global solution for Problem (3.1). On the other hand, the mapping B
is well-defined just on [0, c∗] and it is why Theorem 3.13 has proven the existence
of local solution on subinterval [0, c∗] of J . In order to overcome this difficulty, in
the next subsection we show the existence of another kind solution for Problem (3.1)
which is (ii)-differentiable on one part of J and (i)-differentiable on another part.

3.3. Existence of (ii,i)-solution. Now we define the nonlinear mappings L, which
plays a main role in our discussion, as following

[Lϕ](t) ={
u0 ⊖ (−1) · ((1− q)

∫ t

0
f(t, s, ϕ(s))ds+ q

∫ t

0

∫ s

0
f(s, r, ϕ(r))drds), t ∈ [0, c∗],

ϕ(c∗) +
∫ t

c∗
f(t, s, ϕ(s))ds+

∫ t

c∗

∫ s

0
f(s, r, ϕ(r))drds, t ∈ [c∗, b].

In general the L : C(J,K) → C(J,K) is not well-defined, but under the conditions of
the next theorem, it will be well-defined.

Definition 3.15. Let u, ū ∈ C(J, B̄(u0))), we say that
(a) u is a lower solution for Problem (3.1) if

u(t) ≼ [Lu](t), t ∈ J,

(b) Ū is an upper solution for the problem (3.1) if

ū(t) ≽ [Lū](t), t ∈ J.

Theorem 3.16. Consider Problem (3.1) with f continuous and suppose f is nonde-
creasing in its last argument. Let u0 ∈ K \ R and len(f(t, s, x)) for all x ∈ B̄(u0),

∀t, s ∈ [0, c∗] is bounded with bounds of M , where c∗ = min{ 2len(u0)
M(2(1−q)+qb) , b}. Let

exist l > 0 such that

D(f(t, s, x), f(t, s, y)) ≤ lD(x, y), ∀t ∈ [a, b],

for x ≥1 y and x, y ∈ B̄(u0). Then the existence of a lower solution u (or an upper
solution ū) for Problem (3.1) provides the existence of a fixed point for L like u, and
consequently (ii,i)-solution to Problem (3.1) on [0, b]. Also, limn→∞ Ln(u) = u (or
limn→∞ Bn(ū) = u). Moreover, if w ∈ C([0, c∗], B̄(u0)) is another fixed point of B
such that is comparable to u in the partial ordering ≼, then u = w.
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Proof. By Theorem 3.13, the mapping L is well-defined and there exists a fixed point
for the mapping L like u ∈ C([0, c∗], B̄(u0)) and consequently (ii)-solution for Problem
(3.1) on [0, c∗]. Now by considering u as a fixed point for B on the interval [0, c∗], we
define another mapping T : C([c∗, b],K) → C([c∗, b],K) as follows:

[T ϕ](t) = u(c∗) + q

∫ t

c∗

∫ c∗

0

f(s, r,u(r))drds+ (1− q)

∫ t

c∗
(f(t, s, ϕ(s))ds

+ q

∫ t

c∗

∫ s

c∗
f(s, r, ϕ(r))drds.

Now we will show that u(t) ≼ [T u](t) (or u(t) ≽ [T u](t)) for t ∈ [c∗, b]. Due the fact
that u is a lower solution of Problem (3.1) for t ∈ [0, b] and u ≼ u for t ∈ [0, c∗], we
have for t ∈ [c∗, b]

u ≼ [Lu](t)

= u(c∗) + (1− q)

∫ t

c∗
f(t, s, u(s))ds+ q

∫ t

c∗

∫ s

0

f(s, r, u(r))drds,

≼ u(c∗) + (1− q)

∫ t

c∗
f(t, s, u(s))ds+ q

∫ t

c∗

∫ s

o

f(s, r, u(r))drds,

= u(c∗) + q

∫ t

c∗

∫ c∗

a

f(s, r, u(r))drds+ (1− q)

∫ t

c∗
f(t, s, u(s))ds

+ q

∫ t

c∗

∫ s

c∗
f(s, r, u(r))drds,

≼ u(c∗) + q

∫ t

c∗

∫ c∗

0

f(s, r,u(r))drds+ (1− q)

∫ t

c∗
f(t, s, u(s))ds

+ q

∫ t

c∗

∫ s

c∗
f(s, r, u(r))drds,

= [T u](t).

By Theorem 3.9, the mapping T has a fixed point v ∈ C([c∗, b],K). Obviously u as
defined

u =

{
u, t ∈ [0, c∗],
v, t ∈ [c∗, b],

is a fixed point of L on [0, b]. �

Example 3.17. Consider the interval Caputo-Fabrizio fractional initial value problem

CFD
1
2u(t) =

∫ t

0

2e(−(t−s))u(s)ds, t ∈ [0, 10],

u(0) = [3, 7]. (3.9)

u = [3, 7] is the lower solution of Problem (3.9) according to Definition 3.8. It is easy
to see that all the conditions of Theorem 3.9 are fulfilled and as a conclusion, there
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exists a (i)-solution for this problem. u(t) = [3, 7]et is an exact solution on [0, 10].
On the other hand, len(u0) = len([3, 7]) = 4 and

len(f(t, s, x)) ≤ 2e−(t−s)len(u0) ≤ 8e10 ∀x ∈ B̄(u0), ∀t, s ∈ [0, 10].

Also, u = [3, 7] is the lower solution of Problem (3.9) according to Definition 3.11 and

c∗ = e−10

6 . According to Theorem 3.13, there exists a (ii)-solution for this problem.

u(t) = [−2, 2]e−t + [5, 5]et is an exact solution on [0, e
−10

6 ].
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