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Abstract In this article, we present a fractional order HIV-1 infection model of CD4+ T-cell.
We analyze the effect of the changing the average number of the viral particle N

with initial conditions of the presented model. The Laplace Adomian decomposition
method is applying to check the analytical solution of the problem. We obtain the
solutions of the fractional order HIV-1 model in the form of infinite series. The
concerned series rapidly converges to its exact value. Moreover, we compare our

results with the results obtained by Runge-Kutta method in case of integer order
derivative.
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1. Introduction

Human immune deficiency virus (HIV) is a lenti virus that causes acquired immune
deficiency syndrome (AIDS). This serious disease destroys the immune system of
human being which produce life-threatening opportunistic infections in the body.
In human immune system HIV infects primary cell such as helper T-cell, dendritic
cells and macrophages. When CD4+ T-cell numbers decline below a critical level,
cell-mediated immunity is lost and the body become more progressively susceptible to
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opportunistic infections. HIV epidemic disease is the most dangerous health disease of
the modern time. HIV continuously spreading all over the world and there have been
few sources to continuous it. This is a clear advances in our knowledge of the molecular
biology of the virus and its effect on the human bodies. This is a major dangerous
discoveries in the second decade of the epidemic. HIV infections transfer from a fatal
illness into a chronic conditions. This has led to dramatic change in mobility and
mortality from illness. Moreover,despite these advances on the biomedical front, the
epidemic continues to spread and treatment remains unavailable to the overwhelming
majority of those who require it. It due to destroy millions of peoples and expenditure
of enormous amount of money in health care and research. Although on the medical
frontier there have been many advances, but still is no vaccine available for HIV. A
mathematical model is determined the transmission dynamics of HIV-1 disease and
explain technics to control these disease. In [18], Perelson was introduced a simple
mathematical model for the primary infection with HIV. This model is important in
the field of mathematical models of HIV infection and also many other models have
been proposed, which takes this model as their inspiration. Perelson extended this
model and presented behavior of the model and also consider four category of the
models, uninfected CD4+ T-cell, latently infected CD4+ T-cell, productively infected
CD4+ T-cell and virus population. Rong et al.[3], modified the model further to study
the evaluation of drug resistance. Sadegh Zebai et al. presented the model of HIV-1
infected T-cell and presented stability of the model.
The classical order model provided in [2] is given by

dT

dt
= β − kV T − dT + bT

′
,

dT
′

dt
= kV T − (b+ δ)T

′
,

dV

dt
= NδT

′
− cV,

(1.1)

with given initial conditions, T (0) = T0, T
′
(0) = T

′

0, V (0) = V0. In this article, we
consider the following fractional order extension of the given model as suggested in
[2]. Thus the new fractional order epidemic model is given by

cDα1T = β − kV T − dT + bT
′
,

cDα2T
′
= kV T − (b+ δ)T

′
,

cDα3V = NδT
′
− cV,

(1.2)

with given initial conditions, T (0) = T0, T
′
(0) = T

′

0, V (0) = V0, where 0 < αi ≤ 1
for i = 1, 2, 3. The initial conditions are independent on each other and satisfy the
relation N(0) = T + T

′
+ V where N is the total number of the individuals in the

population, T, T
′
and V denote the uninfected CD4+ cells, infected CD4+ T-cells

and free HIV virus particles in the blood respectively, d is the natural death rate, k
represent rate of infection T-cells, δ represents death rate of infected T-cells, b rep-
resent rate of those infected cells which return to uninfected class, c represent death
rate of virus and N is the average number of viral particles produced by an infected
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cells. For the given model of fractional order the numerical solutions are studied by
using Adomian decomposition method coupled with Laplace transform. For the veri-
fication of our procedure results, we assigned random values to the initial conditions
and parameters.
In 1980 Adomian decomposition method (ADM) was introduced by Adomian, which
is an effective method for finding numerical and explicit solution of a wide class of
differential equations representing physical problems. This method works efficiently
for both initial value problems as well as for boundary value problem, for partial
and ordinary differential equations, for linear and non-linear equations and also for
stochastic system as well [20]. In this method no perturbation or linearization is
required. LADM has been done extensive work to provide analytical solution of non-
linear equations as well as solving frictional order differential equations. In this paper,
we operate Laplace transform method, which is a powerful techniques in engineering
and applied mathematics. With the help of this method we transform fractional dif-
ferential equations into algebraic equations, then solved this algebraic equations by
ADM.

2. Preliminaries

Here, in this section we recall some fundamental definitions and results from frac-
tional calculus. For further detailed study, we refer to [5, 10, 23, 12, 14].

Definition 2.1. The fractional integral of Riemann-Liouville type of order α ∈ R+

of a function f : (0,∞) → R) is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s) ds,

provided that the integral on the right side is pointwise defined on (0,∞).

Definition 2.2. The Caputo fractional order derivative of a function f on the interval
[0, T ] is defined by

cDα
0+f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s) ds,

provided that the integral on the right side is pointwise defined on (0,∞). Further
n = [α] + 1 and [α] represents the integer part of α.

Lemma 2.3. The following result holds for fractional differential equations

Iα[cDαh](t) = h(t) +
n−1∑
i=0

h(i)(0)

i!
ti,

for arbitrary α > 0, i = 0, 1, 2, . . . , n− 1, where n = [α] + 1 and [α] represents the
integer part of α.

Proof. For the proof of Lemma 2.3, see [11]. �
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Definition 2.4. We recall the definition of Laplace transform of Caputo derivative
as

L{cDαy(t)} = sαh(s)−
n−1∑
k=0

sα−i−1y(k)(0), n− 1 < α < n, n ∈ N.

for arbitrary ci ∈ R, i = 0, 1, 2, . . . , n− 1, where n = [α] + 1 and [α] represents the
integer part of α.

3. The Laplace Adomian Decomposition Method

In this section, we discuss the general procedure of the model (1.2) with given
initial conditions. Applying Laplace transform on both side of the model (1.2) as,

L{cDα1T} = L{β − kV T − dT + bT
′
},

L{cDα2T
′
} = L{kV T − (b+ δ)T

′
},

L{cDα3V } = L{NδT
′
− cV },

(3.1)

which implies that
sα1L{T} − sα1−1T (0) = L{β − kV T − dT + bT

′
},

sα2L{T
′
} − sα2−1T

′
(0) = L{kV T − (b+ δ)T

′
},

sα3L{V } − sα3−1V (0) = L{NδT
′
− cV }.

(3.2)

Now using initial conditions and taking inverse Laplace transform in model (3.2), we
have 

T = T0 + L−1

[
1

sα1
L{β − kV T − dT + bT

′
}
]
,

T
′
= T

′

0 + L−1

[
1

sα1
L{kV T − (b+ δ)T

′
}
]
,

V = V0 + L−1

[
1

sα1
L{NδT

′
− cV }

]
.

(3.3)

Assuming that the solutions, T, T
′
, V in the form of infinite series given by

T =
∞∑

n=0

Tn, T
′
=

∞∑
n=0

T
′

n, V =
∞∑

n=0

Vn, (3.4)

and the nonlinear term V T involved in the model is decompose by Adomian polyno-
mial as

V T =

∞∑
n=0

Pn, (3.5)

where Pn are Adomian polynomials defined as

Pn =
1

Γ(n+ 1)

dn

dλn

[ n∑
k=0

λkVk

n∑
k=0

λkTk

]
|λ=0 . (3.6)
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Using (3.5),(3.6) and (3.4) in model (3.3), we have



L(T0) =
T0

s
, L(T

′

0) =
T

′

0

s
L(V0) =

V0

s
,

L(T1) =
β

sα1+1
+

−k

sα1
L{P0} −

d

sα1
L{T0}+

b

sα1
L{T

′

0},

L(T
′

1) =
−k

sα2
L{P0} −

(b+ δ)

sα2
L{T

′

0}, L(V1) =
Nδ

sα3
L{T

′

0} −
c

sα3
L{V0},

L(T2) =
−k

sα1
L{P1} −

d

sα1
L{T1}+

b

sα1
L{T

′

1},

L(T
′

2) =
−k

sα2
L{P1} −

(b+ δ)

sα2
L{T

′

1}, L(V2) =
Nδ

sα3
L{T

′

1} −
c

sα3
L{V1},

...

L(Tn+1) =
−k

sα1
L{Pn} −

d

sα1
L{Tn}+

b

sα1
L{T

′

n},

L(T
′

n+1) =
−k

sα2
L{Pn} −

(b+ δ)

sα2
L{T

′

n}, L(Vn+1) =
Nδ

sα3
L{T

′

n} −
c

sα3
L{Vn}.

(3.7)

Taking laplace inverse of (3.7) on both side, we get



T0 = T0, T
′

0 = T
′

0, V0 = V0,

T1 =
tα1

Γ(α1 + 1)
+ (−kV0T0 − T0 + T

′

0)
tα1

Γ(α1 + 1)
, T

′

1 = (kV0T0 − (b+ δ)T
′

0)
tα2

Γ(α2 + 1)
,

V1 = (δNT
′

0 − cV0)
tα3

Γ(α3 + 1)
,

T2 = (−kV0T0 − T0 + T
′

0)(−kV0 − d)
t2α1

Γ(2α1 + 1)
− kT0(δNT0 − cV0)

tα3+α1

Γ(α3 + α1)

− k(δNT0 − cV0)
tα3+2α1

Γ(α3 + 2α1 + 1)
+ b(kV0T0 − (b+ δ)T

′

0)
tα2+α1

Γ(α2 + α1 + 1)
,

T
′

2 = kV0(−kV0T0 − T0 + T
′

0)
tα2+α1

Γ(α2 + α1 + 1)
+ k(T0δNT

′

0 − cV0)T0
tα3+α2

Γ(α3 + α2 + 1)

+ (δNT
′

0 − cV0)
α3 + α2

Γ(α3 + α2 + 1)
+ (δNT0 − cV0)

tα3+α1

Γ(α3 + α1 + 1)

− (b+ δ)(kV0T0 − (b+ δ)T
′

0)
t2α2

2α2 + 1
,

V2 = δN(kV0T0 − (b+ δ)T
′

0)
tα3+α2

Γ(α3 + α2 + 1)
− c(δNT

′

0 − cV0)
t2α3

Γ(2α3 + 1)
.

(3.8)
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On the above fashion, we can obtain the remaining terms similarly. Finally, we get
the solution in the form of infinite series is given by

T (t) = T0 + T1 + T2 + T3 + ... =
∞∑
i=0

Ti,

T
′
(t) = T

′

0 + T
′

1 + T
′

2 + ... =

∞∑
i=0

T
′

i ,

V (t) = V0 + V1 + V2 + V3 + ... =

∞∑
i=0

Vi.

(3.9)

4. Numerical Simulation

In this section we find numerical simulation of the considered problem (1.2), using

values of the parameter N = 100, δ = 0.16, k = 0.0024, V0 = 10, T
′

0 = 20, T0 =
70, b = 0.2, c = 3.4, β = 1, then after some simplification, we can write the solution
of proposed model (1.2) after three terms as



T0 = 70, T
′

0 = 20, V0 = 10,

T1 =
tα1

Γ(α1 + 1)
− 51.68

tα1

Γ(α1 + 1)
, T

′

1 = −5.52
tα2

Γ(α2 + 1)
, V1 = 286

tα3

Γ(α3 + 1)
,

T2 = 1.36
t2α1

Γ(2α1 + 1)
− 48.04

tα3+α1

Γ(α3 + α1)
− 182.44

tα3+2α1

Γ(α3 + 2α1 + 1)

− 2.60
tα2+α1

Γ(α2 + α1 + 1)
,

T
′

2 = −1.24
tα2+α1

Γ(α2 + α1 + 1)
+ 50.73

tα3+α2

Γ(α3 + α2 + 1)
− 29.20

tα3+α2

Γ(α3 + α2 + 1)

− 17.20
α3 + α1

Γ(α3 + α1 + 1)
+ 1.11

t2α2

Γ(2α2 + 1)
,

V2 = −0.88
tα3+α2

Γ(α3 + α2 + 1)
− 972.40

t2α3

Γ(2α3 + 1)
.

(4.1)
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Figure 1. The plot shows the dynamics of T (t), T
′
(t) and V (t) for

various values of αi(i = 1, 2, 3) = 1 via LADM.
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After, three terms the solutions become

T = 70 +
tα1

Γ(α1 + 1)
− 51.68

tα1

Γ(α1 + 1)
+ 1.36

t2α1

Γ(2α1 + 1)
− 48.04

tα3+α1

Γ(α3 + α1)

− 182.44
tα3+2α1

Γ(α3 + 2α1 + 1)
− 2.60

tα2+α1

Γ(α2 + α1 + 1)
,

T
′
= 20− 5.52

tα2

Γ(α2 + 1)
− 1.24

tα2+α1

Γ(α2 + α1 + 1)
+ 50.73

tα3+α2

Γ(α3 + α2 + 1)

− 29.20
tα3+α2

Γ(α3 + α2 + 1)
− 17.20

α3 + α1

Γ(α3 + α1 + 1)
+ 1.11

t2α2

Γ(2α2 + 1)
,

V = 10 + 286
tα3

Γ(α3 + 1)
− 0.88

tα3+α2+1

Γ(α3 + α2 + 1)
− 972.40

t2α3

Γ(2α3 + 1)
.

(4.2)

From Figure 1, one can see that fractional order produces freedom in growing or
decaying of various cells in the given models. Clearly from the plot, we observed that
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Figure 2. The comparison between the solutions via RK4 and
LADM method at classical order αi(i = 1, 2, 3) = 1.
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fractional order has the great effect on the behavior of dynamics of various cells in the
proposed model. From the Figure 2, we see that our scheme provides close agreement
between the solutions obtained by RK4 method and proposed method. Our method
is better than RK4 because it has no need of predefined step size and neither required
discretization of data.

5. Convergence Analysis

The above solution in the form of series, which is rapidly convergent and converges
uniformly to the exact solution. To check the convergence of the series (4.2), we
use classical techniques, (see [1, 22]). For sufficient conditions of convergence of this
method , we give the following theorem by using idea [7, 16].

Theorem 5.1. Let B and B be two Banach spaces and T : B → B be a contractive
nonlinear operator such that for all x, x

′ ∈ B, ||T (x)−T (x
′
)|| ≤ k||x−x

′ ||, 0 < k < 1.
Then by using of Banach contraction principle, T has a unique point x such that
T x = x, where x = (T, T

′
, V ). The series given in (4.2) can be written by applying
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Adomian decomposition method as

xn = T xn−1, xn−1 =
n−1∑
i=1

xi, n = 1, 2, 3, . . . ,

and assume that x0 = x0 ∈ Sr(x) where Sr(x) = {x′ ∈ B : ||x′ − x|| < r}, then, we
have

(i) xn ∈ Sr(x);

(ii) lim
n→∞

xn = x.

Proof. : For (i), using mathematical induction for n = 1, we have

||x0 − x|| = ||T (x0)− T (x)|| ≤ k||x0 − x||.

Let the result is true for n− 1, then

||x0 − x|| ≤ kn−1||x0 − x||.

we have

||xn − x|| = ||T (xn−1)− T (x)|| ≤ k||xn−1 − x|| ≤ kn||x0 − x||.

Hence using (i) we, have

||xn − x|| ≤ kn||x0 − x|| ≤ knr < r,

which implies that xn ∈ Sr(x).
(ii) Since ||xn − x|| ≤ kn||x0 − x|| and as limn→∞ kn = 0.
So, we have limn→∞ ||xn − x|| = 0 ⇒ limn→∞ xn = x. �

6. Conclusion

With the help of Laplace transform coupled with Adomain decomposition method,
we have developed an easy numerical scheme to compute the numerical solutions of
nonlinear model of HIV-1 of fractional order. The dynamics of the various cells in-
volved in the model have been displayed using Matlab. Also the comparison of the
dynamics of the corresponding cells via RK4 method and proposed method has also
displayed for classical order in the last Figure 2. From the above analysis, we con-
clude that the proposed method is an efficient method and many nonlinear problems
of fractional order as well as classical order differential and integral equations can
easily be solved for their numerical solutions, where the exact solution is impossible
or difficult to calculate.
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