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Abstract This paper obtains the exact solutions of the wave equation as a second-order par-

tial differential equation (PDE). We are going to calculate polynomial and non-
polynomial exact solutions by using Lie point symmetry. We demonstrate the gen-

eration of such polynomial through the medium of the group theoretical properties

of the equation. A generalized procedure for polynomial solution is presented and
this extended to the construction of related polynomials.
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1. Introduction

The wave equation is an important hyperbolic second-order non-linear PDE

utt − (f(u)ux)x − (g(u)uy)y = 0, (1.1)

where f and g are arbirary smooth functions of u and u is the dependent variable of
(t, x, y). This equation uses for the description of waves as they occur in physics such
as sound waves, light waves and water waves. It arises in another fields like acoustics,
electromagnetics, and fluid dynamics.

This paper considers the Eq. (1.1) for f(u) = g(u) = 1. Thus, we will focus on the
revised form of the equation in the following form

utt − uxx − uyy = 0. (1.2)

Then, the wide range of solution with Lie symmetry’s method is given. This method is
based on finding some differential operators (vector fields) called symmetries, in order
to find the exact solutions of differential equations. These operators are the largest
local group of transformations acting on the independent and dependent variables of
the system with the property that they transform solutions of the system to other
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solutions. When one is confronted with a complicated system of PDEs arising from
some physically important problem, the discovery of any explicit solutions whatsoever
is of great interest. Explicit solutions can be used as a models for physical experiments,
as benchmarks for testing numerical methods, etc., and often reflect the asymptotic
or dominant behaviour of more general types of solutions.

One of the most important application of symmetry’s method is the reducing sys-
tems of differential equations, i.e., finding equivalent systems of differential equations
of simpler form, that is called reduction. This method provides a systematic compu-
tational algorithm for determining a large classes of special solutions. The solutions
of the obtained equivalent system will correspond to solutions of the original system.
There is a lot of papers in the literature for this process and one can find the classical
reduction method in [1, 2, 8, 9, 10, 13].

Solutions of the wave equation describe propagation of disturbances out from the
region at a fixed speed in one or in all spatial directions, as doing physical waves from
plane or localized sources. The solutions of the Eq. (1.2) have 10 + 1 + ∞ Lie point
symmetries. The classical solutions are recovered with the use of the non-generic
symmetries to construct similarity solutions. Further solutions, both polynomial and
non-polynomial, are constructed by using the invariants of the Lie point symmetries as
seed solutions and the property of mapping solutions into solutions. These solutions
are analogous to the well-known wave polynomials.

The presented paper is organized as follows: the second section is devoted to intro-
duce the important concept of Lie point symmetry, in the third chapter the reduction
forms of the Eq. (1.2) including the invariants for finding the similarity solutions
are given [3]. Then, we applied the Lie bracket of the symmetries to find some new
solutions from the old solutions. In section four, some new non-polynomial solutions
are given from the old non-polynomial solutions. Finally some special solutions are
plotted at the end of this section.

2. Lie Symmetries of the Equation

Symmetry plays a very important role in various fields of nature. As is known to
all, Lie method is an effective method and a large number of equations [13] are solved
with the aid of this method. There are still many authors who use this method to
find the exact solutions [2, 4, 6, 7, 13] of non-linear differential equations. Since this
method has powerful tools to find exact solutions of non-linear problems [13, 14]. For
example, as it said in the introduction, when we are confronted with a complicated
system of PDEs or ODEs, it is intersting to find a vast set of exact solutions for the
given system via a systematic methods with no limitation, this would be done by
using Lie’s symmetry as an analytic applicable method. The general procedure to
obtain Lie symmetries of differential equations, and their applications to find analytic
solutions of the equations are described in detail in several monographs on the subject
(e.g. [3, 4, 8]) and in numerous papers in the literature (e.g. [5, 6, 11, 12, 13]).

A PDE with p−independent and q−dependent variables has a Lie point transfor-
mations

x̃i = xi + ξi(x, u) +O(ε2), ũα = uα + φα(x, u) +O(ε2). (2.1)
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where

ξi =
∂x̃i
∂ε
|ε=0 for i = 1, ..., p, φα =

∂ũα
∂ε
|ε=0 for α = 1, ..., q. (2.2)

The action of the Lie group can be considered by its associated infinitesimal generator

X =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
, (2.3)

on the total space of PDE (the space containing independent and dependent vari-
ables). Furthermore, the characteristic of the vector field (2.3) is given by

Qα(x, u(1)) = φα(x, u)−
p∑
i=1

ξi(x, u)
∂uα

∂xi
,

and its n−th prolongation is determined by

X(n) =

p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

n∑
J=j=0

φJα(x, u(j))
∂

∂uαJ
, (2.4)

where φJα = DJQ
α +

∑p
i=1 ξiu

α
J,i are the prolong coefficients.

The aim is to analyse the point symmetry structure of the wave equation, where
u is a smooth function of (x, y, t). Let us consider a one-parameter Lie group of
infinitesimal transformations given by

t̃ = t+ εξ1(t, x, y, u) +O(ε2), x̃ = x+ εξ2(t, x, y, u) +O(ε2),
ỹ = y + εξ3(t, x, y, u) +O(ε2), ũ = u+ εφ(t, x, y, u) +O(ε2),

(2.5)

where ε is the group parameter. Then, one requires that this transformations leaves
invariant the set of solutions of the Eq. (1.2) . This yields to the linear system of equa-
tions for the infinitesimals ξ1, ξ2, ξ3, φ . The Lie algebra of infinitesimal symmetries
is the set of vector fields in the form of

X = ξ1
∂

∂t
+ ξ2

∂

∂x
+ ξ3

∂

∂y
+ φ

∂

∂u
.

This vector field has the second prolongation

X(2) = X + φt
∂

∂ut
+ φx

∂

∂ux
+ φy

∂

∂uy
+ φtt

∂

∂utt

+φtx
∂

∂utx
+ φty

∂

∂uty
+ φxx

∂

∂uxx
+ φxy

∂

∂uxy
+ φyy

∂

∂uyy
. (2.6)
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Acting (2.6) on the Eq. (1.2) and using the invariance condition, yields the full
symmetry group of the equation spanned by the following eleven vector fields:

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂t
,

X4 = −y ∂
∂x

+ x
∂

∂y
X5 = t

∂

∂x
+ x

∂

∂t
,

X6 = t
∂

∂y
+ y

∂

∂t
X7 = x

∂

∂x
+ y

∂

∂y
+ t

∂

∂t
,

X8 = (t2 + x2 − y2)
∂

∂x
+ 2xy

∂

∂y
+ 2xt

∂

∂t
− xu ∂

∂u
,

X9 = 2xy
∂

∂x
+ (t2 − x2 + y2)

∂

∂y
+ 2yt

∂

∂t
− yu ∂

∂u
,

X10 = 2xt
∂

∂x
+ 2yt

∂

∂y
+ (t2 + x2 + y2)

∂

∂t
− tu ∂

∂u
,

X11 = u
∂

∂u
, X12 = f(t, x, y)

∂

∂u
.

where f (t, x, y) is a solution of Eq (1.2).

3. Calculation of Solutions

The number of Lie point symmetries is written in the form given to high light
their different provenances. The eleventh symmetry, the infinity, is a feature of linear
evolution equation and those non-linear evolution equation which can be linearized
by means of a point transformation. For a linear evolution equation the function,
f(t, x, y), is a solution of the equation itself as is the case of the wave equation (1.2).

Determination of similarity solutions of the wave (and other) equation is a standard
procedure to be found in many texts. We remind the reader, X11 and X12 do not
provide similaity solutions. The associated Lagrange’s system for X1 is

dx

dε
= 1,

dt

dε
= 0,

dy

dε
= 0,

du

dε
= 0, (3.1)

where ε is the group parameter in (2.5). The solution of the system (3.1) yields
invariants are y , t and u. Thus, we can write u = g(t, y) and substitue this into Eq.
(1.2) that reduced to

gtt − gyy = 0. (3.2)

This equation have two solution sets; polynomial and non-polynomial solution,

g(t, y) = t2 + y2, (3.3)

is polynomial solution and

g(t, y) = ln
y − t
y + t

, (3.4)
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Table 1. Invariants and the solution set for the symmetry Xi, i = 1, ..., 10

Symmetry Invariant transformations Reduced equations

X1 q = t, r = y, g = u gqq − grr = 0
X2 q = t, r = x, g = u gqq − grr = 0
X3 q = x, r = y, g = u gqq + grr = 0
X4 q = t, r = x2 + y2, g = u gqq − 4gr − 4rgrr = 0
X5 q = y, r = t2 − x2, g = u gqq + 4gr + 4rgrr = 0
X6 q = x, r = y2 − t2, g = u gqq + 4gr + 4rgrr = 0
X7 q = t

x
, r = y

x
, g = u r2grr + q2gqq + 2qrgrq + 2qgq

+2rgr − grr + gqq = 0

X8 q = x2+y2−t2

y
, r = t

y
, g = u

√
y 4r2qrr + 8grqgr + 4g2qgg + 12gqg

+12rqr − 4qgg + 3q = 0

X9 q = x2+y2−t2

x
, r = t

x
, g = u

√
x 4r2qrr + 8grqgr + 4g2qgg + 12gqg

+12rqr − 4qgg + 3q = 0

X10 q = t2−y2−x2

x
, r = y

x
, g = u

√
x 4r2qrr + 8grqgr + 4g2qgg + 12gqg

+12rqr + 4qgg + 3q = 0

is non-polynomial solution for the reduced equation (3.2). The associated Lagrange’s
system for X5 is

dt

dε
= x,

dx

dε
= t,

dy

dε
= 0,

du

dε
= 0. (3.5)

So the solutions of the system (3.5) yields the invariants y, t2 − x2 and u. We write
u = g(y, r) such that r = t2 − x2 and substitue this into Eq. (1.2) that reduced to

4rgrr + 4gr + gyy = 0. (3.6)

The equation (3.6) have two solution sets too, polynomial and non-polynomial solu-
tions,

g(r, y) = r + 2y2, (3.7)

is polynomial solution and

g(r, y) = arctanh

√
y2 + r

y2
, (3.8)

is non-polynomial solution for this reduced equation (3.6). The procedure is the same
for other symmetries. We summarize the results in Table 1 and 2.

From these solutions we may construct further solutions by the property that
symmetries map solutions to solutions. Linear PDEs have an infinite number of
solutions and under quite general conditions an admitted symmetry must be fiber
preserving. To construct the solution, one uses the property that the Lie bracket
of Xi, i = 1, ..., 10 with X12 produces another member of the class of symmetries
of the form of X12. This provide a route to the generation of new and non-trivial
solutions from trivial similarity solutions that are associated withXi, i = 1, ..., 10. The
structure of the new solutions from the property of the Lie bracket with the solution
symmetry summarized in Table 3. For example we can obtain other solutions from
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Table 2. Invariants and the solution set for the symmetry Xi, i = 1, 6

Symmetry Invariants Polynomial solutions Non-polynomial solutions

X1 t, y, u t2 + y2 ln y−t
y+t

X2 t, x, u t2 + x2 ln x−t
x+t

X3 x, y, u x2 − y2 0

X4 t, x2 + y2, u 2t2 + x2 + y2 arctan
√

x2+y2−t2
t2

X5 t2 − x2, y, u t2 − x2 + 2y2 arctanh
√

y2+t2−x2

y2

X6 x, y2 − t2, u y2 − t2 − 2x2 arctanh
√

y2+x2−t2
x2

Table 3. Structure of the new solutions generated by the Lie bracket

[Xi, X12] New Symmetry New Solutions

[X1, X12]
∂fold
∂x

∂
∂u

fnew = ∂fold
∂x

[X2, X12]
∂fold
∂y

∂
∂u

fnew = ∂fold
∂y

[X3, X12]
∂fold
∂t

∂
∂u

fnew = ∂fold
∂t

[X4, X12]
(
−y ∂fold

∂x
+ x ∂fold

∂y

)
∂
∂u

fnew = −y ∂fold
∂x

+ x ∂fold
∂y

[X5, X12]
(
t ∂fold

∂x
+ x ∂fold

∂t

)
∂
∂u

fnew = t ∂fold
∂x

+ x ∂fold
∂t

[X6, X12]
(
t ∂f
∂y

+ y ∂f
∂t

)
∂
∂u

fnew = t ∂fold
∂y

+ y ∂fold
∂t

[X7, X12]
(
x ∂fold

∂x
+ y ∂fold

∂y
+ t ∂fold

∂t

)
∂
∂u

fnew = x ∂fold
∂x

+ y ∂fold
∂y

+ t ∂fold
∂t

[X8, X12]
(
xfold + (t2 + x2 − y2) ∂fold

∂x
fnew = xfold + (t2 + x2 − y2) ∂fold

∂x

+2xy ∂fold
∂y

+ 2xt ∂fold
∂t

)
∂
∂u

+2xy ∂fold
∂y

+ 2xt ∂fold
∂t

[X9, X12]
(
yfold + 2xy ∂fold

∂x
+ (t2 − x2 + y2) ∂fold

∂y
fnew = yfold + 2xy ∂fold

∂x

+2yt ∂fold
∂t

)
∂
∂u

+(t2 − x2 + y2) ∂fold
∂y

+ 2yt ∂fold
∂t

[X10, X12]
(
tfold + 2xt ∂fold

∂x
+ 2yt ∂fold

∂y
fnew = tfold + 2xt ∂fold

∂x
+ 2yt ∂fold

∂y

+(t2 + x2 + y2) ∂fold
∂t

)
∂
∂u

+(t2 + x2 + y2) ∂fold
∂t

the seed solution f(x, t, y) = y2 + t2 by X1 that is 0, or by X2 that are 2y, 2 and 0, by
X3 that are 2xy, 2(x2 − y2), −8xy, −8(x2 − y2) and etc. These results summarized
in Table 4 and 5.

4. Non-polynomial Solutions

The seed solutions of Xi provide a source for non-polynomial solutions of wave
equation. For example for non-polynomial solution (3.4) X1 gives 0 as a trivial solu-
tion. But, X2 gives

f1(t, x, y) = −2
t

t2 − y2
, f2(t, x, y) = −2

t(y + t)

(y − t)2
+ 2

t

y − t
,

f3(t, x, y) = 4
t(y + t)

(y − t)3
− 4

t

(y − t)2
,
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Table 4. Classification of exact polynomial solutions for wave equation

fold = y2 + t2 fold = x2 + t2 fold = x2 − y2

fnew = 2y fnew = 2x fnew = 2x
fnew = 2t fnew = 2t fnew = 2y
fnew = c fnew = c fnew = c

fn
new = (−1)n(22n+1)xy fn

new = (−1)n+1(22n+1)xy fn
new = (−1)n(22n)xy

fn
new = (−1)n(22n+1)xy fn

new = (−1)n+1(22n+1)xy fn
new = (−1)n(22n)xy

fn
new = (22n+1)xt fn

new = (22n)xt fn
new = (22n+1)xt

fn
new = (22n+1)(x2 + t2) fn

new = (22n)(x2 + t2) fn
new = (22n+1)(x2 + t2)

fnew= 5xt2 + 5xy2 fnew = 7xt2 + 3x3 − 2xy2 fnew = 2xt2 + 3x3 − 7xy2

fnew= 7yt2 − 2yx2 + 3y3 fnew = 5yt2 + 5yx2 fnew = 7yx2 − 2yt2 − 3y3

fnew= 2tx2 + 7ty2 + 3t3 fnew = 7tx2 + 2ty2 + 3t3 fnew = 5tx2 − 5ty2

Table 5. Classification of exact polynomial solutions for wave equation

fold = y2 + 2t2 + x2 fold = 2y2 + t2 − x2 fold = y2 − t2 − 2x2

fnew= 2x fnew = 2x fnew = 2x
fnew=2t fnew = 2t fnew = 2y
fnew= c fnew = 2y fnew = 2t

fn
new=3(−1)n(22n+1)(x2 − y2) fn

new = (−1)n(22n+1)(x2 − y2) fn
new = (−1)n+1(22n+1)(x2 − y2)

fn
new=(−1)n(22n)(x2 + t2) fn

new = 3(−1)n(22n+1)xy fn
new = 3(−1)n(22n+1)(x2 − y2

fn
new=(22n+1)yt 0 fn

new = (−3)(22n+1)xt
fn
new =3(22n+1)(y2 + t2) fn

new = 3(22n+1)yt fn
new = (−3)(22n+1)(x2 + t2)

fnew= 12xt2 + 3xy2 + 3x3 fnew = 3xt2 + 12xy2 − 3x3 fnew = 9xy2 − 9xt2 − 6x3

fnew= 12yt2 + 3yx2 + 3y3 fnew = 9yt2 − 9yx2 + 6y3 fnew = 3y3 − 12yx2 − 3yt2

fnew= 9ty2 + 9tx2 + 6t3 fnew = 12ty2 − 3tx2 + 3t3 fnew = 3ty2 − 12tx2 − 3t3

as non-polynomial solutions. A straightforward calculation shows that

fn(t, x, y) = 2tn!

[(
(−1)nt(y + t)

(y − t)(n+1)

)
+

(
(−1)n+1

(y − t)n

)]
,

is a general solution for the Eq. (1.2).
Similarly X3 provides the solutions:

f1(t, x, y) = 2
y

t2 − y2
, f2(t, x, y) = −2

y(y + t)

(y − t)2
− 2

y

y − t
,

f3(t, x, y) = −12
y(y + t)

(y − t)4
− 12

y

(y − t)3
.

Observation outcomes is expressed in Table 6. We can also run this process for other
non-polynpmial solutions in the last column of the Table 1 to obtain a number of
solutions for wave equation. These results are comming in Tables 7, 8, 9 and 10.
Also some special cases in polynomial and non-polynomial form are plotted in Figure
(1).
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Table 6. Classification of exact non-polynomial solutions for wave
equation

Xi fold = ln y−t
y+t

X1 fnew= 0

X2 fnew=2tn![ (−1)nt(y+t)
(y−t)(n+1) ) + ( (−1)n+1

(y−t)n )]

X3 fnew= 2yn![ (−1)nt(y+t)
(y−t)(n+1) ) + ( (−1)n

(y−t)n )]

X4 fnew=−2 tx
t2−y2 , 2

t(yt2−2tx2−y3)
(−y+t)2 , 2 tx(t3+5yt2−4tx3−7ty2+y3)

(−y+t)3 , etc

X5 fnew=2 yx
t2−y2 , 2

yt(t2−2 x2−y2)
(t2−y2)2 ,−2

yx(5 t4−6 t2x2−4 t2y2−2 x2y2−y4)
(t2−y2)3 , etc

X6 fnew=0
X7 fnew =0

Table 7. Classification of exact non-polynomial solutions for wave
equation

Xi fold = ln x−t
x+t

X1 fnew= −2 t
t2−x2 ,−4 xt

(t2−x2)2
,−4

t(t2+3 x2)
(t2−x2)3

,etc

X2 fnew=0

X3 fnew= 2 x
t2−x2 ,−4 xt

(t2−x2)2
, 4

x(3 t2+x2)
(t2−x2)3

,etc

X4 fnew=2 ty
t2−x2 ,

−2xt(t2−x2−2y2)
(t2−x2)2 ,−4 yt(2t2x2−t2y2−2x4−x2y2)

(t2−x2)2
, etc

X5 fnew=−2, 0
X6 fnew=0

X7 fnew =−2 t(t
2−x2−y2)
(t2−x2) ,etc

Table 8. Classification of exact non-polynomial solutions for wave
equation

Xi fold = arctan
√

x2+y2−t2
t2

X1 fnew= xt2√
−t2+x2+y2(t4−t2+x2+y2)

,etc

X2 fnew= t2y√
−t2+x2+y2(t4−t2+x2+y2)

,etc

X3 fnew=
(t2−2 x2−2 y2)t√

−t2+x2+y2(t4−t2+x2+y2)
,etc

X4 fnew=0

X5 fnew=−2
xt
√

−t2+x2+y2

t4−t2+x2+y2

X6 fnew=− t
2
√

−t2+x2+y2

t4−t2+x2+y2 , etc

X7 fnew=−3
xt2
√

−t2+x2+y2

t4−t2+x2+y2 , etc
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Table 9. Classification of exact non-polynomial solutions for wave
equation

Xi fold = arctanh
√

y2+t2−x2

y2

X1 fnew= xy2√
t2−x2+y2(−y4+t2−x2+y2)

,etc

X2 fnew=
(2 t2−2 x2+y2)y√

t2−x2+y2(−y4+t2−x2+y2)
,etc

X3 fnew= − ty2√
t2−x2+y2(−y4+t2−x2+y2)

,etc

X4 fnew=2
xy(t2−x2)√

t2−x2+y2(−y4+t2−x2+y2)
, etc

X5 fnew=0

X6 fnew =

√
t2−x2+y2

−y4+t2−x2+y2 , etc

X7 fnew=
xy2(3t2−3x2+y2)√

t2−x2+y2(−y4+t2−x2+y2)
, etc

Table 10. Classification of exact non-polynomial solutions for wave
equation

Xi fold = arctanh
√

y2+x2−t2
x2

X1 fnew = y2x√
t2−x2+y2(−y4+t2−x2+y2)

,etc

X2 fnew = yx2√
−t2+x2+y2(x4+t2−x2−y2)

,etc

X3 fnew = −tx2√
−t2+x2+y2(x4+t2−x2−y2)

,etc

X4 fnew =
2yx
√

−t2+x2+y2

(x4+t2−x2−y2) ,etc

X5 fnew =
−2tx
√

−t2+x2+y2

(x4+t2−x2−y2) ,etc

X6 fnew =
−x2
√

−t2+x2+y2

(x4+t2−x2−y2) ,etc

X7 fnew =
xy2(3t2−3x2+y2)√

t2−x2+y2(−y4+t2−x2+y2)
, etc

5. Conclusion

In this paper, by using the Lie symmetry groups, we studied the symmetry prop-
erties and similarity reduction forms of the (2+1)-dimensional linear wave equation
(1.2). Moreover, we also derived the polynomial and non-polynomial solutions of Eq.
(1.2), by virtue of this fact, that symmetries and their Lie brackets map solutions to
solutions. The method is applicable for any other differential equations which admitts
a symmetries such as X12.
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Figure 1. Graphs of solutions

(a) u = x2 − y2

(b)

u = arctan

(√
x2+y2−t2

t2

)

(c) u = ln
(

y−t
y+t

)
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