
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 4, No. 4, 2016, pp. 285-297

Positive solutions for discrete fractional intiail value problem

Tahereh Haghi
Sahand University of Technology, Tabriz, Iran.
E-mail: Taherehhaghi@gmail.com

Kazem Ghanbari∗

Sahand University of Technology, Tabriz, Iran.
E-mail: kghanbari@sut.ac.ir

Abstract In this paper, the existence and uniqueness of positive solutions for a class of non-

linear initial value problem for a finite fractional difference equation obtained by
constructing the upper and lower control functions of nonlinear term without any

monotone requirement .The solutions of fractional difference equation are the size

of tumor in model tumor growth described by the Gompertz function. We use the
method of upper and lower solutions and Schauder fixed point theorem to obtain

the main results.

Keywords. discrete fractional calculus; existence of solutions; Positive solution; Fixed point theorem.

2010 Mathematics Subject Classification. 39A12; 26A33.

1. Introduction

Fractional calculus, the continuous case, has a long history and there is a renewed
interest in both the study of fractional calculus and fractional differential equations.
In fact, rapid progress is being made in the study of problems for fractional differential
equations. We refer the reader to [14]-[16] for accounts of the historical development;
we refer the reader to [6] ,[7],[11],[17] for samples of recent studies in boundary value
problems for fractional differential equations.

The kernel of the Riemann-Liouville fractional integral
(t− s)ν−1

Γ(ν)
is a clear ana-

logue of the Cauchy function for ordinary differential equations. Hence, the authors
are heavily influenced by the approach taken by Miller and Ross [12] who study the
linear ν-th order fractional differential equation as an analogue of the linear n-th order
ordinary differential equation.

To the authors knowledge, very little progress has been made to develop the theory
of the fractional finite difference equation. Miller and Ross [13] produced an early
paper; the authors [1] have developed and applied a transform method. The authors
[2] also developed and applied a transform method for fractional q-calculus problems.
An remarkable bibliography for the fractional q-calculus is provided in [2].
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We start with basic definitions and results. Let ν > 0 and σ(s) = s+ 1. The ν-th
fractional sum of f is defined by

∆−νf(t; a) =
1

Γ(ν)

t−ν∑
s=a

(t− σ(s))(ν−1)f(s). (1.1)

Note that f is defined for s = a mod (1) and ∆−νf is defined for t = a + ν
mod (1); in particular, ∆−νf maps functions defined on Na to functions defined on
Na+ν , where Nt = {t, t + 1, t + 2, ...}. We point out that we employ throughout the
notation, σ(s), because eventually progress will be made to develop the theory of the

fractional calculus on time scales [9]. We remind the reader that t(ν) =
Γ(t+ 1)

Γ(t+ ν + 1)
, we shall suppress the dependence on a in ∆−νf(t; a) since domains will be clear
by the context, and finally we point out that Miller and Ross [13] have argued that
limν→0+ ∆−νa f(t) = f(t).

The µ-th fractional difference is defined as

∆µu(t) = ∆m−νu(t) = ∆m(∆−ν)u(t) (1.2)

where µ > 0 and m− 1 < µ < m, m denotes a positive integer and −ν = µ−m .
Tumor growth, a special relationship between tumor size and time, is of special

interest since growth estimation is very critical in clinical practice. Three different
terms are typically used to model growth behavior in biology: exponential, logistic
and sigmoidal. Tumor growth, however, is best described by sigmoidal functions.
In 1825, Benjamin Gompertz introduced the Gompertz function, a sigmoid function,
which is found to be applicable to various growth phenomena, in particular tumor
growth (see [10])The Gompertz difference equation describes the growth models and
these models can be studied on the basis of the parameters a (growth rate) and b
(exponential rate of growth deceleration) in the recursive formulation of the Gompertz
law of growth [8].

The Gompertz difference equation in [8] is given by

lnG(t+ 1) = a+ b lnG(t).

Next we introduce Gompertz fractional difference equation

∆ν lnG(t− ν + 1) = (b− 1) lnG(t) + a.

For simplicity if we replace ln lnG(t) = y(t), we obtain

∆ν
0y(t− ν + 1) = (b− 1)y(t) + a. (1.3)

Next we are concerned with the following optimization problem
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J [y] = min

T−1∑
t=0

U(y(t− ν + 1)),

with a constraint

∆ν
0y(t− ν + 1) = (b− 1)y(t) + a, y(0) = c,

or

∆ν
ν−1y(t) = (b− 1)y(t− ν + 1) + a,

where y(t) is the size of tumor and U is a function with continuous partial derivatives.
We have

J [y] = min

T−1∑
t=0

{
U(y(t−ν+1))+λ(t−ν+1)(∆ν

ν−1y(t)−(b−1)y(t−ν+1)−a)
}
.

It follows from (Theorem 4.1 in [5]), Euler-Lagrange equations with respect to λ
and y are

Uy

(
y(t− ν + 1)) + λ(t− ν + 1)(b− 1) + T+ν−1∆ννtλ

ρ(t+ 2(ν − 1)
)

= 0,

(1.4)

or

Uy

(
y(t− ν + 1)) + λ(t− ν + 1)(b− 1)

+
1

Γ(1− ν)
(−∆)

∑T+ν−1
s=t+ν−1(s− σ(t+ (2ν − 1)))(−ν)λ(ρ(s)

)
,

and

∆α
ν−1y(t)− (b− 1)y(t− ν + 1)− a = 0, (1.5)

where t ∈ [1, T − 1].
At this point, to the best of the authors knowledge, there is no known or published

numerical methods of solving the above systems of Eqs. (1.4)-(1.5). Therefore we
shall focus on proving the existence and uniqueness result for the Gompertz fractional
difference equation (1.3) with an initial condition y(0) = c.

Consider the following fractional difference equation with an initial condition

∆ν
0y(t− ν + 1) = f(t, y(t)), t = 0, 1, 2, ...., y(0) = c, (1.6)

where α ∈ (0, 1], f is a real-valued function, and c is a real number. With t + α − 1
shift at the same time, we obtain

∆ν
0y(t) = f(t+ ν − 1, y(t+ ν − 1)). (1.7)
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In this article, we shall consider the following nonlinear fractional difference equa-
tion with an initial condition (fractional initial value problem, FIVP){

∆νy(t) = f(t+ ν − 1, y(t+ ν − 1)), t = 0, 1, 2, ..., b,

y(ν − 1) = 0,
(1.8)

where ν ∈ (0, 1], f : [ν−1, ν+ b+ 1]Nν−1 ×R→ R is continuous, b ≥ 2 is an integer
and [ν − 1, ν + b+ 1]Nν−1

= {0, 1, ..., b+ 2}.
In Section 2, together with the definitions of discrete fractional sum operator ∆−ν

and discrete fractional difference operator ∆ν , we shall list some basic theorems in
discrete fractional calculus. For these general results, we shall remove the constraint
0 < ν ≤ 1. In Section 3, we obtain sufficient conditions for the existence of solutions
of the nonlinear FIVP (1.8). In Section 4, we obtain sufficient conditions for the
uniqueness of positive solutions of the nonlinear FIVP (1.8)

2. Discrete fractional difference operators

Througout this section, ν > 0 . The first two results (the commutative property of
the fractional sum operator and the power rule) and their proofs can be found in [1].

Theorem 2.1. Let f be a real-valued function defined on Na and let µ; ν > 0. Then
the following equalities hold

∆−ν [∆−µf(t)] = ∆−(µ+ν) = ∆−µ[∆−νf(t)].

Lemma 2.2. Let µ 6= 1 and assume µ+ ν + 1 is not a non-positive integer. Then,

∆−νt(µ) =
Γ(µ+ 1)

Γ(µ+ ν + 1)
t(µ+ν).

The next result, proved earlier by the authors in [3], addresses the commutativity
of fractional sums and fractional differences of arbitrary order.

Theorem 2.3. For any real number ν and any positive integer p, the following equal-
ity holds

∆−ν∆pg(t) = ∆p∆−νg(t)−
p−1∑
k=0

(t− a)(ν−p+k)

Γ(ν + k − p+ 1)
∆kg(a),

where g is defined on Na.

Assume 0 ≤ N − 1 < ν ≤ N . Using power rule Lemma 2.2, implies that there are
N linearly independent solutions to ∆νy(t) = 0. To see this, note that

∆νt(µ) = ∆N−(N−ν)t(µ) = ∆N∆−(N−ν)t(µ)

= ∆N Γ(µ+ 1)

Γ(µ+ 1 +N − ν)
t(µ+N−ν).

Replace µ by ν −m to obtain

∆νt(ν−m) =
Γ(ν −m+ 1)

Γ(N −m+ 1)
∆N t(N−m).
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Since ∆N t(N−m) = 0 , if m = 1; ...;N ,

∆νt(ν−m) = 0, m = 1; ...;N.

We state this observation in the form of a lemma.

Lemma 2.4. Let 0 ≤ N − 1 < ν < N . Let Ci ∈ R, i = 1; 2; ...;N . Then,

y(t) = C1t
(ν−1) + C2t

(ν−2) + ...+ CN t
(ν−N),

satisfie ∆νy(t) = 0.

By Theorems 2.1 and 2.3, it follows that

∆−ν∆νy(t) = y(t) + C1t
(ν−1) + C2t

(ν−2) + ...+ CN t
(ν−N).

Moreover,

∆−ν∆νy(t) = ∆−ν∆N−(N−ν)y(t) = ∆−ν∆N∆−(N−ν)y(t),

and

∆−ν∆N∆−(N−ν)y(t) = ∆N [∆−ν∆−(N−ν)]y(t)−
N−1∑
k=0

t(ν−N+k)

Γ(ν + k − 1)
∆k[∆ν−Ny(a)]

= ∆N [∆−N ]y(t) + C1t
(ν−1) + C2t

(ν−2) + ...+ CN t
(ν−N)

= y(t) + C1t
(ν−1) + C2t

(ν−2) + ...+ CN t
(ν−N)

This proves the following lemma.

Lemma 2.5. Let 0 ≤ N − 1 < n ≤ N . Then

∆−ν∆νy(t) = y(t) + C1t
(ν−1) + C2t

(ν−2) + ...+ CN t
(ν−N),

for some Ci ∈ R, i = 1; 2; ...;N .

3. Existence of Positive Solution

For our purposes, define the Banach space B by

B = {y : [ν − 1, ν + b+ 1]Nν−1
→ R : y(ν − 1) = 0},

with norm

‖y(t)‖ = max |y(t)| t ∈ [ν − 1, ν + b+ 1]Nν−1 .

and define cones

K = {y ∈ B, y(t) ≥ 0 for t ∈ [ν − 1, ν + b+ 1]Nν−1
}.

The positive solution which we consider in this article is such that u(ν − 1) =
0, u(t) > 0, t ∈ (ν − 1, ν + b+ 1]Nν−1 , u(t) ∈ B.
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Eq. (1.8) is equivalent to the following equation

y(t) =
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)f(s+ ν − 1, y(s+ ν − 1)), (3.1)

where Γ denotes the Gamma function. The equation (3.1) is equivalent to the fixed
point equation Ay(t) = y(t), y(t) ∈ B, where operator A : K → K is defined as

A(y(t)) =
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)f(s+ ν − 1, y(s+ ν − 1)). (3.2)

We shall obtain sufficient conditions for the existence of a fixed point of A. First,
note that A is a summation operator on a discrete finite set. Hence, A is completely
continuous.

Lemma 3.1. The operator A : K → K is compact.

Proof. The operator A : K → K is continuous in view of the assumption of nonneg-
ativeness and continuity of f(t, y).

Let M ⊂ K be bounded, that is, there exists a positive constant l such that ‖y‖ ≤ l
for any y ∈ M , and let L = maxt∈[ν−1,ν+b+1]Nν−1

,0≤y≤1 f(t, y(t)) + 1, then, for any

y ∈M , we have

|A(y(t))| =
∣∣∣ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)f(s+ ν − 1, y(s+ ν − 1))
∣∣∣

≤ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)
∣∣∣f(s+ ν − 1, y(s+ ν − 1))

∣∣∣
≤ L

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1) ≤ L

Γ(ν)Γ(ν + 1)
tν .

Thus,

‖Ay‖ ≤ L(b+ 2)ν

Γ(ν)Γ(ν + 1)
,

Hence, A(M) is uniformly bounded.
Now, we will prove that the operator A is equicontinuous. For each y ∈ M , any

ε > 0, t1, t2 ∈ [ν − 1, ν + b + 1]Nν−1 , t1 < t2., let δ =
εΓ(ν)Γ(ν + 1)

L
, then, when
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|t2 − t1| < δ we have

|A(y(t2))−A(y(t1))| =
∣∣∣ 1

Γ(ν)

t2−ν∑
s=0

(t2 − σ(s))(ν−1)f(s+ ν − 1, y(s+ ν − 1))

− 1

Γ(ν)

t1−ν∑
s=0

(t1 − σ(s))(ν−1)f(s+ ν − 1, y(s+ ν − 1))
∣∣∣

≤ L

Γ(ν)

[ t2−ν∑
s=0

(t2 − σ(s))(ν−1)
t1−ν∑
s=0

(t1 − σ(s))(ν−1)
]

≤ L

Γ(ν)Γ(ν + 1)
|tν2 − tν1 | <

L

Γ(ν)Γ(ν + 1)
|t2 − t1|

<
L

Γ(ν)Γ(ν + 1)
δ = ε.

Therefore, A(M) is equicontinuous. The Arzela-Ascoli Theorem implies that A is
compact. �

Let f(t, y) : [ν−1, ν+b+1]Nν−1
×[0,+∞)→ [0,+∞) be a given continuous function.

Take c, d ∈ R+, and d > c. For any y ∈ [c, d] we define the upper-control function
H(t, u) = supc≤η≤y f(t, η) and lower-control function h(t, y) = infy≤η≤d f(t, η). Ob-
viously, H(t, y), h(t, y) are monotonous non-decreasing on y and h(t, y) ≤ f(t, y) ≤
H(t, y).

Suppose ỹ(t), ŷ(t) ∈ K ,d ≥ ỹ(t) ≥ ŷ(t) ≥ c, satisfy

∆ν ỹ(t) ≥ H(t+ ν − 1, ỹ(t+ ν − 1))
(
or ỹ(t)

≥ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)H(s+ ν − 1, ỹ(s+ ν − 1))
)
,

and

∆ν ŷ(t) ≤ h(t+ ν − 1, ŷ(t+ ν − 1))
(
or ŷ(t)

≤ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)h(s+ ν − 1, ŷ(s+ ν − 1))
)
.

Then the function ỹ(t), ŷ(t) are called a pair of upper and lower solution for Eq.
(1.8), respectively.

Now, we give the main results of this article.

Theorem 3.2. Assume that f(t, y) : [ν − 1, ν + b + 1]Nν−1
× [0,+∞) → [0,+∞) is

continuous and ỹ(t) and ŷ(t) are a pair of upper and lower solutions of Eq. (1.8),
then the initial value problem(1.8) has at least one solution y(t) ∈ B. Moreover,

ỹ(t) ≥ y(t) ≥ ŷ(t), t ∈ [ν − 1, ν + b+ 1]Nν−1
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Proof. Let

S = {y(t)|y(t) ∈ K, ỹ(t) ≥ y(t) ≥ ŷ(t), t ∈ [ν − 1, ν + b+ 1]Nν−1
}

be a set endowed with the norm ‖v(t)‖ = max|v(t)| . Then we have ‖v(t)‖ ≤ d,
and S is a convex, bounded, and closed subset of the Banach space B. The operator
A : K → K is compact. Then, we need only to prove A maps S into S.

For any v(t) ∈ S, we have ỹ(t) ≥ v(t) ≥ ŷ(t) , then,

A(v(t)) =
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)f(s+ ν − 1, v(s+ ν − 1))

≤ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)H(s+ ν − 1, v(s+ ν − 1))

≤ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)H(s+ ν − 1, ỹ(s+ ν − 1)) ≤ ỹ(t),

and

A(v(t)) =
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)f(s+ ν − 1, v(s+ ν − 1))

≥ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)h(s+ ν − 1, v(s+ ν − 1))

≥ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)h(s+ ν − 1, ŷ(s+ ν − 1)) ≥ ŷ(t).

Hence, ỹ(t) ≥ A(v(t)) ≥ ŷ(t), t ∈ [ν − 1, ν + b + 1]Nν−1 , that is, A : S → S.
According to Schauder fixed point theorem, the operator A has at least one fixed
point y(t) ∈ S, t ∈ [ν−1, ν+ b+ 1]Nν−1

. Therefore, the initial value problem (1.8) has
at least one solution y(t) ∈ B and ỹ(t) ≥ v(t) ≥ ŷ(t), t ∈ [ν − 1, ν + b+ 1]Nν−1

.
�

Lemma 3.3. Assume that f(t, u) : [ν − 1, ν + b + 1]Nν−1
× [0,+∞) → [0,+∞) is

continuous and there exists k2 ≥ k1 > 0, such that

k1 ≤ f(t, l) ≤ k2, (t, l) ∈ [ν − 1, ν + b+ 1]Nν−1
× [0,+∞). (3.3)

Then, the initial value problem (1.8) has at least one positive solution y(t) ∈ B.
Moreover

k1
Γ(ν)Γ(ν + 1)

tν ≤ y(t) ≤ k2
Γ(ν)Γ(ν + 1)

tν .

Proof. By assumption (3.3) and the definition of control function, we have

k1 ≤ h(t, l) ≤ H(t, l) ≤ k2, (t, l) ∈ [ν − 1, ν + b+ 1]Nν−1 × [c, d].
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Now, we consider the equation

∆νw(t) = k2, w(ν − 1) = 0. (3.4)

Obviously, equation (3.4) has a positive solution

w(t) =
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)k2 =
k2

Γ(ν)Γ(ν + 1)
tν ,

and w(t) = ∆−νk2 ≥ ∆−νH(t, w(t)), namely, w(t) is a upper solution of Eq. (1.8).
In a similar way, we verify that v(t) = ∆−νk1 is the lower solution of Eq. (1.8). An
application of Theorem 3.2 now yields that the initial value problem (1.8) has at least
one solution y(t) ∈ B and satisfies

k1
Γ(ν)Γ(ν + 1)

tν ≤ y(t) ≤ k2
Γ(ν)Γ(ν + 1)

tν .

�

Lemma 3.4. Assume that f(t, u) : [ν − 1, ν + b + 1]Nν−1
× [0,+∞) → [0,+∞) is

continuous, where a is a positive constant, moreover,

a < lim
y→+∞

f(t, y) < +∞, t ∈ [ν − 1, ν + b+ 1]Nν−1 . (3.5)

Then, the initial value problem (1.8) has at least one positive solution y(t) ∈ B.

Proof. By assumption (3.5), there are positive constants N,R, such that when y > R,
we have f(t, y) ≤ N . Let

C = max
t∈[ν−1,ν+b+1]Nν−1

,0≤y≤R
f(t, y),

then, a ≤ f(t, y) ≤ N + C, 0 < y < +∞.
By Lemma 3.3, the initial problem (1.8) has at least one positive solution y(t) ∈ B
and this solution satisfies

a

Γ(ν)Γ(ν + 1)
tν ≤ y(t) ≤ N + C

Γ(ν)Γ(ν + 1)
tν .

�

Lemma 3.5. Assume that f(t, u) : [ν − 1, ν + b + 1]Nν−1 × [0,+∞) → [0,+∞) is
continuous, where a is a positive constant, moreover,

a < lim
y→+∞

max
t∈[ν−1,ν+b+1]Nν−1

f(t, y)

y
< +∞. (3.6)

Then, the initial value problem (1.8) has at least one positive solution y(t) ∈ B′ ,
where

B′ = {y : [ν − 1, δ]Nν−1
→ R : y(ν − 1) = 0}

and ν − 1 < δ < ν + b+ 1.
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Proof. According to

a < lim
y→+∞

max
t∈[ν−1,ν+b+1]Nν−1

f(t, y)

y
< +∞,

there exist M > 0 and c > 0, such that for any y(t) ∈ B, we have

f(t, y(t)) ≤My(t) + c.

By the definition of control function, we have

H(t, y(t)) ≤My(t) + c. (3.7)

Next, we consider the equation

∆νy(t) = My(t+ ν − 1) + c, t ∈ [ν − 1, ν + b+ 1]Nν−1
. (3.8)

Eq.(3.8) is equivalent to following equation

y(t) = ∆−ν(My(t+ ν − 1) + c) (3.9)

=
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)(My(s+ ν − 1) + c). (3.10)

Let T : K → K be an operator defined as follow

Ty(t) =
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)(My(s+ ν − 1) + c), t ∈ [ν − 1, ν + b+ 1]Nν−1 .

Then by Lemma 3.1 the operator T is compact.
Let

BR = {y(t) ∈ K| ‖y − c

Γ(ν)Γ(ν + 1)
ts‖ ≤ R < +∞},

then, BR is convex, bounded, and closed subset of the Banach space B′ , where
ν − 1 < δ < ν + b+ 1.

For any y ∈ BR, we have

‖y‖ ≤ c

Γ(ν)Γ(ν + 1)
tν +R

≤ c

Γ(ν)Γ(ν + 1)
δν +R

≤ c

Γ(ν)Γ(ν + 1)
(b+ ν + 1)ν +R,

then,

‖A(y)− c

Γ(ν)Γ(ν + 1)
tν‖ ≤ M

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)y(s+ ν − 1)

≤ M

Γ(ν)
‖y‖

t−ν∑
s=0

(t− σ(s))(ν−1) ≤ M

Γ(ν)Γ(ν + 1)
‖y‖tν

≤ M

Γ(ν)Γ(ν + 1)
(

c

Γ(ν)Γ(ν + 1)
(b+ ν + 1)ν +R)δν .
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Take

δ < min
{

[
Γ(ν)Γ(ν + 1)

2M
]
1
ν , [

Γ(ν)2Γ(ν + 1)2R

2Mc
]
1
ν , (b+ ν + 1)

}
,

then

‖A(y)− c

Γ(ν)Γ(ν + 1)
tν‖ ≤ R.

Hence, the Schauder fixed point theorem assures operator T has at least one fixed
point, and then, Eq.(3.8) has at least one positive solution w∗(t), where t ∈ [ν −
1, δ]Nν−1

. Therefore, we have

w∗(t) = ∆−ν(Mw∗(t+ ν − 1) + c) =
1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)(w∗(s+ ν − 1) + c).

Combining with condition (10), we have

w∗(t) ≥ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)H(s, w∗(s+ ν − 1)).

Obviously,w∗(t) is the upper solution of initial value problem (1.8), and v∗(t) =
∆−ν(a) > 0 is the lower solution of Eq.(1.8). By Theorem 3.2, the system (1.8) has
at least one positive solution y(t) ∈ B′ = {y : [ν − 1, δ]Nν−1 → R : y(ν − 1) = 0},
where ν − 1 < δ < ν + b+ 1 and v∗(t) ≤ y(t) ≤ w∗(t). �

Lemma 3.6. Assume that f(t, u) : [ν − 1, ν + b + 1]Nν−1
× [0,+∞) → [0,+∞) is

continuous, where a is a positive constant, and there exist d > 0, c > 0, such that

max{f(t, l) : (t, l) ∈ [ν − 1, ν + b+ 1]Nν−1 × [0, d]} ≤ cΓ(ν)Γ(ν + 1). (3.11)

Then, the initial value problem (1.8) has at least one positive solution y(t) ∈ B and
satisfies

0 < ‖y(t)‖ ≤ c.

Proof. By the definition of control function, we have

a ≤ H(t, l) ≤ cΓ(ν)Γ(ν + 1), (t, l) ∈ [ν − 1, ν + b+ 1]Nν−1
× [0, d].

By Lemma 3.3, the initial problem (1.8) has at least one positive solution y(t) ∈ B,
and satisfies 0 < y(t) ≤ c. Hence, 0 < ‖y(t)‖ ≤ c. �

4. Uniqueness of Positive Solution

In this section, we shall prove the uniqueness of the positive solution using Banach
contraction principle.

Lemma 4.1. If the operator A : X → X is a contraction mapping, where X is the
Banach space, then A has a unique fixed point in X.
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Theorem 4.2. If Eq. (1.8) has a pair of positive upper and lower solutions and for
any u(t), v(t) ∈ B, t ∈ [ν − 1, ν + b+ 1]Nν−1 , there exists l > 0, such that

‖f(t, u)− f(t, v)‖ ≤ l‖u− v‖, (4.1)

then for
l

Γ(ν)Γ(ν + 1)
< 1, the initial problem (1.8) has a unique positive solution

y(t) ∈ B.

Proof. From Theorem 3.2, if the condition in Theorem 4.2 holds, it follows that the
initial value problem (1.8) has at least one positive solution in S. Hence, we need
only to prove that the operator A defined in (3.1) is a contractiont in B. In fact, for
any y1(t), y2(t) ∈ B, by assumption (4.1), we have

‖A(y1)(t)−A(y2)(t)‖ ≤ 1

Γ(ν)

t−ν∑
s=0

(t− σ(s))(ν−1)
∥∥f(s+ ν + 1, y1(s+ ν + 1))

− f(s+ ν + 1, y2(s+ ν + 1))
∥∥

≤ l

Γ(ν)
‖y1(s+ ν + 1)− y2(s+ ν + 1)‖

t−ν∑
s=0

(t− σ(s))(ν−1)

≤ l

Γ(ν)Γ(ν + 1)
‖y1(s+ ν + 1)− y2(s+ ν + 1)‖.

Thus, for
l

Γ(ν)Γ(ν + 1)
< 1, the operator A is a contraction mapping. Therefore, the

initial value problem (1.8) has a unique positive solution y(t) ∈ B. �

Finally, we give an example to illustrate our results.

Example 4.3. We consider the fractional equation

∆
2
3 y(t) = 1 +

y(t+ ν + 1)

y(t+ ν + 1) + sin(y(t+ ν + 1) + 1)
, y(−1

3
) = 0, (4.2)

where f(t, y) = 1 +
y

y + sin(y + 1)
. Due to limy→+∞ f(t, y) = 2 and f(t, y) ≥ 1, y ∈

[0,+∞), by Lemma 3.4, the equation (4.2) has a positive solution.
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