
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 4, No. 4, 2016, pp. 261-275

Solutions structure of integrable families of Riccati equations and
their applications to the perturbed nonlinear fractional Schrodinger
equation

A. Neirameh∗
Department of Mathematics, faculty of Science,
Gonbad Kavous University, Gonbad, Iran.
E-mail: a.neirameh@gonbad.ac.ir

S. Shokooh
Department of Mathematics, faculty of Science,
Gonbad Kavous University, Gonbad, Iran.
E-mail: shokooh@gonbad.ac.ir

M. Eslami
Department of Mathematics, Faculty of Mathematical Sciences,
University of Mazandaran, Babolsar, Iran.
E-mail: eslami.mostafa@umz.ac.ir

Abstract Some preliminaries about the integrable families of Riccati equations and solutions
structure of these equations in several cases are presented in this paper, then by

using of definitions for fractional derivative, we apply the new extended of tanh

method to the perturbed nonlinear fractional Schrodinger equation with the kerr
law nonlinearity. Finally by using of this method and solutions of Riccati equations,

we obtain several analytical solutions for perturbed nonlinear fractional Schrodinger

equation. The proposed technique enables a straightforward derivation of parameters
of solitary solutions.
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1. Introduction

The Riccati equation (RE),

φ′ = γ (t)φ2 + β (t)φ+ α (t) , (1.1)

named after the Italian mathematician Jacopo Francesco Riccati [5], is a basic first-
order nonlinear ordinary differential equation (ODE) that arises in different fields of
mathematics and physics [29] is one of the most simple nonlinear differential equations
because it is of first order and with quadratic nonlinearity. Obviously, this was the
reason that as soon as Newton invented differential equations, RE was the first one
to be investigated extensively since the end of the 17th century [30]. Which can be
considered as the lowest order nonlinear approximation to the derivative of a function
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in terms of the function itself. It is well known that solutions to the general Riccati
equation are not available, and only special cases can be treated [19,26]. Even though
the equation is nonlinear, similar to the second order inhomogeneous linear ODEs one
needs only a particular solution to find the general solution.
Next by using these solutions we obtain the exact travelling wave solutions for per-
turbed nonlinear fractional Schrodinger equation. It is significant to looking for the
exact traveling wave solutions for nonlinear partial differential equations (PDEs) in
nonlinear sciences. As mathematical models of the phenomena, the investigation of
exact solutions of these equations will help us to understand these phenomena bet-
ter. Therefore, exact traveling wave solution methods of PDEs have become more
and more important resulting in methods like the homogeneous balance method [39-
40], the tanh-sech method [22-24,35,36], the extended tanh-coth method [7,8,43,33,1],
the (G’/G)-expansion method [34,37,16,14,38], the modified simple equation method
[15,41].
This article contains four sections. Section 2 introduces the preliminaries for Riccati
equation and solution method, Section 3 presents an application and Section 4 brings
a conclusion.

2. Preliminaries for integrable families of Riccati equations and
solution method

In this section for obtaining a new integrability condition for the generalized Riccati
equation (1.1), we consider the Riccati equation in the standard form which is given
by the equation [6,9]

E (ξ, u) = u′ (ξ) = u2 (ξ) + n (ξ) . (2.1)

For this aim, we need some definitions and theorems
Definition 2.1. The symmetries of (2.1) are given by the elements of a connected
Lie group with parameter a{

ξ∗ = ξ + af (ξ, u) + o
(
a2
)
,

u∗ = u+ ah (ξ, u) + o
(
a2
)
,

(2.2)

which transform solutions into solutions. Alternatively, the infinitesimal generators
of the Lie algebra of (2.2), which are the components of the vector field associated to
(2.2)

∂ = f (ξ, u) ∂ξ + h (ξ, u) ∂u, (2.3)

where ∂ξ = ∂
∂ξ , and ∂u = ∂

∂u are called symmetries of (2.1).

The symmetry variablesf (ξ, u), h (ξ, u) can be found by solving the following equa-
tion, which is called determinant equation [6,25,28,13,9,10,11,12]

hξ (ξ, u) + [hu (ξ, u)− fξ (ξ, u)]E (ξ, u)− fu (ξ, u)E2 (ξ, u)−
f (ξ, u)Eξ (ξ, u)− h (ξ, u)Eu (ξ, u) = 0,

(2.4)

where E (ξ, u) is as in (2.1). Eq. (2.4) does not split into an overdetermined system,
therefore it has an infinite set of solutions. That is why we can hope find solutions of
certain forms only. On the other hand, we can see that (2.4) can be written as
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−fu (ξ, u)u4 (ξ) + (−2n (ξ) fu (ξ, u) + hu (ξ, u)− fξ (ξ, u))u2 (ξ)−
2h (ξ, u)u (ξ) + (n (ξ) [hu (ξ, u)− fξ (ξ, u)− fu (ξ, u)n (ξ)] +
hξ (ξ, u)− f (ξ, u) n′ (ξ)) = 0.

(2.5)

Respect to this last equation, we have our first result which say us that f depend
only on n and does not of u (ξ)

Proposition 2.2. [9,13,28] Let f (ξ, u) =
∑
fi (ξ)ui (ξ) , h (ξ, u) = h0 (ξ)+h1 (ξ)u (ξ) ,

a solution of (2.5). Then f (ξ, u) = f (ξ).
Theorem 2.3. The standard Riccati equation (2.1) admits the vector fields

∂ = f (ξ) ∂ξ −
(
f ′ (ξ)u (ξ) +

f ′′ (ξ)

2

)
∂u, (2.6)

where f (ξ) satisfies the third order ordinary differential equation

f ′′′ (ξ) + 4f ′ (ξ)n (ξ) + 2n′ (ξ) f (ξ) = 0. (2.7)

Proof. In accordance with proposition 2.2, we seek solutions to (2.5) in the form{
f (ξ, u) = f (ξ) ,
h (ξ, u) = k (ξ) + r (ξ)u (ξ) .

(2.8)

Substituting (2.8) into (2.5) and equaling the coefficients of this last equation to zero,
we obtain the following system

r (ξ) = −f ′ (ξ) ,
k (ξ) = 1

2r
′ (ξ) ,

n (ξ) r (ξ)− [n (ξ) f (ξ)]
′
+ k′ (ξ) = 0.

(2.9)

From the firsts two equations in (2.9) we have

h (ξ, u) = −1

2
f ′′ (ξ)− f ′ (ξ) . (2.10)

Substituting the expressions for k (ξ) and r (ξ) in the third equation that appear in
(2.9), finally Eq. (2.8) is obtained and the proof is complete.
We cannot find solutions of (2.8) in the case that n (ξ) is an arbitrary function.
However, an analysis of (2.8) may be useful. In fact, if we consider (2.8) as an first
order differential equation in the unknowns n (ξ) and we solve it. We obtain

n (ξ) =

(
f ′ (ξ)

2
)
− 2f (ξ) f ′′ (ξ) + 4k

4f2 (ξ)
, (2.11)

where K is an integration constant. According with the previous results, Eq. (2.11)
say us that the following family of Riccati equations in standard form

u′ (ξ) = u2 (ξ) +

(
f ′ (ξ)

2
)
− 2f (ξ) f ′′ (ξ) + 4k

4f2 (ξ)
, (2.12)

is integrable by quadratures and the respective solutions are obtained using (2.10).
We have the following new integrability condition to generalized Riccati equation (1.1)
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Proposition 2.4. If in Eq. (1.1) the coefficients are defined in some interval [a, b] ⊂ <
and p (ξ) ∈ C2 [a, b] , q (ξ) ∈ C1 [a, b] , r (ξ) ∈ C [a, b] are related as


1

4p2(ξ ) ,{
(−p (ξ) q (ξ))

2
+ 4p (ξ)

3
r (ξ)− 2p (ξ) p′ (ξ) q (ξ) −

3p′2 (ξ) + 2p 2 (ξ) q′ (ξ) + 2p (ξ) p′′ (ξ)
}

=
(f ′(ξ)2)−2f(ξ)f ′′(ξ)+4k

4f2(ξ) ,

(2.13)

with f (ξ) ∈ C2 (a, b) , f (ξ) 6= 0 a properly chosen function and K an arbitrary con-
stant, then a solution to (1.1) can be obtain using elementary integration.

Proof. With the change of variable

φ (ξ) =
1

p (ξ)

u (ξ)−
q (ξ) + p′(ξ)

p(ξ)

2

 , (2.14)

(1.1) reduces to (2.1) where

n (ξ) = 1
4p2(ξ)

[
− (p (ξ) q (ξ))

2
+ 4p (ξ)

3
r (ξ)− 2p (ξ) p′ (ξ) q (ξ) −

3p′2 (ξ) + 2p2 (ξ) q′ (ξ) +2p (ξ) p′′ (ξ)] .
(2.15)

Taking into account [6], we have the hypothesis given in the enunciate of the theorem.
In accordance with the previous results, we can construct a variety of families of
Riccati equations in standard form that are integrable by quadratures [10]. In fact, if
we take an f (ξ) ∈ C2 (a, b) , f (ξ) 6= 0 and K arbitrary constant, the family of Riccati
equations

u′ (ξ) = u2 (ξ) +

(
f ′ (ξ)

2
)
− 2f (ξ) f ′′ (ξ) + 4k

4f2 (ξ)
, (2.16)

is integrable by quadratures. Moreover, f (ξ, u) = f (ξ) and h (ξ, u) = − 1
2f
′′ (ξ) −

f ′ (ξ) are the components of the vector field associated to Lie group (2.2) admitted
by this family. The following families may be considered as important examples
Case 1. We consider the Riccati equation [6,25,28,13,9]

φ′ (ξ) = γ (t)φ2 (ξ) + β (t)φ (ξ) + α (t) , (2.17)

where α (t) , γ (t) 6= 0, β (t) are functions that do not depend of ξ. By means of the
substitution (2.14) then (2.15) reduces to following SRE

u′ (ξ) = u2 (ξ) +
4α (t) γ (t)− β2 (t)

4
. (2.18)

The hypothesis in proposition 2.4 are satisfied if we take K = 4α(t)γ(t)−β2(t)
4 and

f (ξ) = 1. Therefore, by (2.8)-(2.12) with c = 0 and using (2.14) we get the following
set of solutions to (2.17)
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If α (t) 6= 0, γ (t) 6= 0 and β (t) 6= 0

φ (ξ) =



1
γ(t)

(
− 1
ξ
− β(t)

2

)
, β2 (t) = 4γ (t)α (t),

1
γ(t)

(√
4γ(t)α(t)−β2(t)

2
tan

[√
4γ(t)α(t)−β2(t)

2
ξ

]
− β(t)

2

)
, 4γ (t)α (t)− β2 (t) > 0,

1
γ(t)

(
−
√

4γ(t)α(t)−β2(t)

2
cot

[√
4γ(t)α(t)−β2(t)

2
ξ

]
− β(t)

2

)
, 4γ (t)α (t)− β2 (t) > 0,

1
γ(t)

(
−
√

4γ(t)α(t)−β2(t)

2
tanh

[√
4γ(t)α(t)−β2(t)

2
ξ

]
− β(t)

2

)
, 4γ (t)α (t)− β2 (t) < 0,

1
γ(t)

(
−
√

4γ(t)α(t)−β2(t)

2
coth

[√
4γ(t)α(t)−β2(t)

2
ξ

]
− β(t)

2

)
, 4γ (t)α (t)− β2 (t) < 0.

(2.19)

If γ (t) = 0 and β (t) 6= 0

φ (ξ) =
−α (t) + β (t) eβ(t)ξ

β (t)
. (2.20)

Case 2. To solve the Riccati equation [13]

φ′ (x) = cos ξ − sin (ξ − φ (ξ)) y (ξ ), (2.21)

we use (2.14) to obtain the SRE

u′ (ξ) = u2 (ξ) +
2 cos ξ − sin2 ξ

4
. (2.22)

The conditions in Proposition 2.4 are satisfied if we take K = 0 and f (ξ) = ecos ξ. So
that, we obtain the solution [26]

u (ξ) = sin ξ − 1

ecos ξ
∫
e− cos ξdξ

. (2.23)

Finally, using (2.14) with p (ξ) = 1, q (ξ) = − sin ξ, a particular solution to initial
equation is given by

φ (ξ) = sin ξ − 1

ecos ξ
∫
e− cos ξdξ

+
sin ξ

2
. (2.24)

Case 3. The Riccati equation [6]

φ′ = Aξm
(
φ2 (ξ) + 1

)
, (2.25)

has the standard form

u′ (ξ) = u2 (ξ) +
−m2 − 2m+ 4A2ξ2m+2

4ξ2
. (2.26)
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The hypothesis in proposition 2.4 are satisfied if we take K = A2 and f (ξ) = ξ−m.
Therefore, we have [26]

u (ξ) =

 m+2|A|ξm+1 tan
[
|A|
(
ξm+1

m+1 −c
)]

2ξ , m 6= −1,
|A|− 1

2 +tan[|A|(ln ξ−c)]
x , m 6= −1.

(2.27)

Finally, by (2.14),

φ (ξ) =

{
± tan

[
|A|
(
c− ξm+1

m+1

)]
, m 6= −1,

± tan [|A| (c− ln ξ)] , m 6= −1,
(2.28)

are solutions to (2.25). In this case, c is an arbitrary constant.
Next for complete the structure of our method we consider some definitions about
the fractional derivative.
Recently, a new modification of Riemann-Liouville derivative is proposed by Jumarie
[35]

Da
xf (x) =

1

Γ (1− α)

d

dx

x∫
0

(x− ε)−α (f (ε)− f (0)) dε, 0 < α < 1,

and gave some basic fractional calculus formulae, for example, formulae (4.12) and
(4.13) in [35]

Dα
x (u (x) v (x)) = v (x)Dα

x (u (x)) + u (x)Dα
x (v (x)) , (2.29)

Dα
x (f (u (x))) = f ′u (u)Dα

x (u (x)) = Dα
xf (u)

(
u

′

x

)α
, (2.30)

The last formula (2.2) has been applied to solve the exact solutions to some nonlinear
fractional order differential equations. If this formula were true, then we could take

the transformation ξ = x− ktα

Γ(1+α) and reduce the partial derivative ∂αU(x,t)
∂tα to U ′ (ξ).

Therefore the corresponding fractional differential equations become the ordinary dif-
ferential equations which are easy to study. But we must point out that Jumarie’s
basic formulae (2.1) and (2.2) are not correct, and therefore the corresponding results
on differential equations are not true [35]. Now by using of most popular definitions
and theorems as follows

Definition 2.5. Let fα (t) stands for Tα (f) (t). Hence

fα (t) = lim
ξ→0

f
(
t+ ξt1−α

)
− f (t)

ξ
.

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

fα (t) exists then by definition

fα (0) = lim
t→0+

fα (t) .

We should remark that Tα (tµ) = µtµ−α. Further, this definition coincides with the
classical definitions of R-L and of Caputo on polynomials (up to a constant multiple).
One can easily show that Tα satisfies all the properties in the theorem [2].
Theorem 2.6. Let α ∈ [0, 1) and f, g be α-differentiable at a point t, Then
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(i)Tα (af + bg) = aTα (f) + bTα (g) , for all a, b ∈ R,
(ii)Tα (tµ) = µtµ−α, for all µ ∈ R,
(iii)Tα (fg) = fTα (g) + gTα (f),

(iν)Tα

(
f
g

)
= fTα(g)−gTα(f)

g2 .

In addition, f is differentiable, then Tα (f) (t) = t1−α dfdt .
Theorem 2.7. Let f : [0,∞) → R be a function such that f is differentiable and also
differentiable. Let g be a function defined in the range of f and also differentiable;
then, one has the following rule [1]

Tα (fog) (t) = t1−αg′ (t) f ′ (g (t)) .

The above rule is referred to as Atangana beta-rule [35-43]. We will present new
derivative for some special functions

(i)Tα (ecx) = cx1−αecx, c ∈ R,
(ii)Tα (sin bx) = bx1−α cos bx, b ∈ R,
(iii)Tα (cos bx) = −bx1−α sin bx, b ∈ R,
(iν)Tα

(
1
αx

α
)

= 1.

However, it is worth noting the following fractional derivatives of certain functions

(i)Tα

(
e

1
α t
α
)

= e
1
α t,

(ii)Tα
(
sin 1

α t
)

= cos 1
α t,

(iii)Tα
(
cos 1

α t
)

= − sin 1
α t.

Definition 2.8. (Fractional Integral) Let a ≥ 0 and t ≥ a. Also, let f be a function
defined on (a, t] and α ∈ f . Then the α fractional integral of f is defined by

Iαα (f) (t) =

t∫
a

f (x)

x1−α dx,

if the Riemann improper integral exists. It is interesting to observe that the α frac-
tional derivative and the α fractional integral are inverse of each other as given in
[2].

Theorem 2.9. (Inverse property). Let a ≥ 0 , and α ∈ (0, 1). Also, let f be a
continuous function such that Iαa f exists. Then
Tα (Iαa f) (t) = f (t) , for t ≥ a.
Researchers with the aid of above contents and [35] introduce a new definition for
wave transformations, that for fractional equations

G
(
u,Dα

t u,D
α
xu,D

α
y u,D

2α
t u,D2α

x , Dα
t D

α
xu, , ....

)
= 0, 0 < α ≤ 1.

As follow

u = u(ξ), ξ = a
xα

α
+ b

tα

α
, (2.31)

where k and c are real constants. This enables us to use the following changes

Dα
t (.) = c

d

dξ
, Dα

x (.) = k
d

dξ
, D2α

x (.) = k2 d
2

dξ2
,
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where a and b are constants.

3. Method applied

Now with the aid of the solutions structure of Riccati equation and new definition
for fractional derivative we consider the perturbed nonlinear fractional Schrodinger
equation with the kerr law nonlinearity

i ∂
αu
∂tα + uxx + γu |u|2 + i

[
γ1uxxx+γ2 |u|2 ux + γ3

(
|u|2
)
x
u
]

= 0,

t > 0, 0 <α ≤ 1,

(3.1)

where γ1 is third order dispersion, γ2 is the nonlinear dispersion, while γ3 is a also a
version of nonlinear dispersion.
Substituting (2.31) into equation (3.2) we can show that equation (3.2) is reduced
into an ordinary differential equation

ibuξ + a2uξξ + γu |u|2 + i

[
γ1a

3uξξξ + γ2a |u|2 uξ + γ3a
(
|u|2
)
ξ
u

]
= 0.

(3.2)

Function u is a complex function so we can write

u (ξ) = e isξw (ξ) , (3.3)

where s is a constant and w (ξ) is a real function. Then (3.2) reduced to[(
−bs − a2s2 + γ1a

3s3
)
w + (γ − γ2as)w

3 +
(
a2 − 3γ1a

3s
)
wξξ
]

+
i
[(
b+ 2a2s− 3γ1a

3s2
)
wξ + γ1a

3wξξξ + (γ2a + 2γ3a)w2wξ
]

= 0.

(3.4)

Then we have two equations as follows[(
−bs − a2s2 + γ1a

3s3
)
w + (γ − γ2as)w

3 +
(
a2 − 3γ1a

3s
)
wξξ
]

= 0,(
b+ 2a2s− 3γ1a

3s2
)
wξ + γ1a

3wξξξ + (γ2a + 2γ3a)w2wξ = 0.

(3.5)

Integrating of second equation (3.5) and taking zero as the integration constant, we
have (

b+ 2a2s− 3γ1a
3s2

)
w + γ1a

3wξξ +
1

3
(γ2a + 2γ3a)w3 = 0. (3.6)

By (3.6) and first equation (3.5) we have the same solutions. So, we have the following
equation

−bs − a2s2 + γ1a
3s3

b+ 2a2s− 3γ1a3s2
=

γ − γ2as
1
3 (γ2a + 2γ3a)

=
a2 − 3γ1a

3s

γ1a3
, (3.7)

from (3.7) we obtain

s =
−b
2a2

+
3

2
γ1as

2 +
A

2C
γ1a, (3.8)
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where we assume that

A = −bs − a2s2 + γ1a
3s3, B = a2 − 3γ1a

3s, C = γ − γ2as. (3.9)

So first equation (3.5) is transformed into the following form

Aw +Bwξξ + Cw3 = 0. (3.10)

Now we introduce new extension of generalized tanh method

u (ξ) =

M∑
i=0

ai (φ (ξ) + h)
i
+

2M∑
i=M+1

ai (φ (ξ) + h)
M−i

, (3.11)

Balancing w′′ with w3in Eq. (3.10) give

3M = M + 2⇒M = 1. (3.12)

We then assume that Eq. (3.11) has the following formal solution

w (ξ) = a0 + a1 (φ (ξ) + h) + a2 (φ (ξ) + h)
−1
, (3.13)

and φ satisfied in following Riccati equation

φ′ (ξ) = γ (t)φ2 (ξ) + β (t)φ (ξ) + α (t) . (3.14)

By considering the φ (ξ) + h = Ψ in equation (3.13) we have

w (ξ) = a0 + a1Ψ + a2Ψ−1, (3.15)

and

Ψ′ = γΨ2 + (β − 2γh)Ψ + γh2 − βh+ α. (3.16)

By using equations (3.16) and (3.15) we obtain

w′′ = 2a1γ
2Ψ3 + [3a1γ(β − 2γh)] Ψ2+

[
2a1γ(γh2 − βh+ α) + a1(β − 2γh)2

]
Ψ+

a2(β − 2γh)γ + a1(β − 2γh)(γh2 − βh+ α)+[
a2(β − 2γh)2 + 2a2(γh2 − βh+ α)γ

]
Ψ−1+

[
3a2(β − 2γh)(γh2 − βh+ α)

]
Ψ−2+[

2a2(γh2 − βh+ α)2
]

Ψ−3.

(3.17)

Substituting Eqs. (3.13)-(3.17) into (3.10) and collecting all terms with the same
order of Ψj together, we convert the left-hand side of Eq. (3.10) into a polynomial in
Ψj . Setting each coefficient of each polynomial to zero, we derive a set of algebraic
equations for a0, a1, a2 and h. By solving these algebraic equations we obtain several
case of variables solutions for example we have
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a1 = γ
√
−2βC
C ,

h = 1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B) ,

a0 = ± 1
6

√
−6C(−β+B)B(−Bβ2+4Bαγ+2A)

C(−β+B) ,

a2 = − 1
6

2Aβ+4Bαβγ+12Bβγ2h2−12Bβ2γh
γ
√
−2Cββ

+

2Bβ3−3B2β2+12B2βγh−12B2γ2h2

γ
√
−2Cββ

.

(3.18)

Now by substituting variables (3.18) into (3.13) along with (2.19) if β2 (t) = 4γ (t)α (t)
we have

w (x, t) = ± 1
6

√
−6C(−β+B)B(−Bβ2+4Bαγ+2A)

C(−β+B) +

γ
√
−2βC
C

[
1
γ(t)

(
− 1
ax + btα

α

− β(t)
2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]
−

1
6

2Aβ+4Bαβγ+12Bβγ2h2−12Bβ2γh+2Bβ3−3B2β2+12B2βγh−12B2γ2h2

γ
√
−2Cββ

×[
1
γ(t)

(
− 1
ax + btα

α

− β(t)
2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]−1

.
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So in this case from (3.3) we obtain the solution of perturbed nonlinear fractional
Schrodinger equation as follow

u1 (x, t) = ± 1
6

e
is(ax + btα

α )√−6C(−β+B)B(−Bβ2+4Bαγ+2A)

C(−β+B) +

e is(ax + btα

α ) × γ
√
−2βC
C

[
1
γ(t)

(
− 1
ax + btα

α

− β(t)
2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]
−

1
6e

is(ax + btα

α ) ×
(

2Aβ+4Bαβγ+12Bβγ2h2−12Bβ2γh
γ
√
−2Cββ

+

2Bβ3−3B2β2+12B2βγh−12B2γ2h2

γ
√
−2Cββ

)
×
[

1
γ(t)

(
− 1
ax + btα

α

− β(t)
2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]−1

.

If 4 γ (t)α (t)− β2 (t) > 0

u2 (x, t) = ± 1
6

e
is(ax + btα

α )√−6C(−β+B)B(−Bβ2+4Bαγ+2A)

C(−β+B) +

e is(ax + btα

α ) × γ
√
−2βC
C ×[

1
γ(t)

(√
4γ(t)α(t)−β2(t)

2 tan

[√
4γ(t)α(t)−β2(t)

2

(
ax + btα

α

)]
− β(t)

2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]
−

1
6e

is(ax + btα

α ) ×
(

2Aβ+4Bαβγ+12Bβγ2h2−12Bβ2γh
γ
√
−2Cββ

+

2Bβ3−3B2β2+12B2βγh−12B2γ2h2

γ
√
−2Cββ

)
×

[
1
γ(t)

(√
4γ(t)α(t)−β2(t)

2 tan

[√
4γ(t)α(t)−β2(t)

2

(
ax + btα

α

)]
− β(t)

2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]−1

.
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If 4γ (t)α (t)− β2 (t) < 0

u3 (x, t) = ± 1
6

e
is(ax + btα

α )√−6C(−β+B)B(−Bβ2+4Bαγ+2A)

C(−β+B) +

e is(ax + btα

α ) × γ
√
−2βC
C ×[

1
γ(t)

(
−
√

4γ(t)α(t)−β2(t)

2 coth

[√
4γ(t)α(t)−β2(t)

2

(
ax + btα

α

)]
− β(t)

2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]
−

1
6e

is(ax + btα

α ) ×
(

2Aβ+4Bαβγ+12Bβγ2h2−12Bβ2γh
γ
√
−2Cββ

+

2Bβ3−3B2β2+12B2βγh−12B2γ2h2

γ
√
−2Cββ

)
×

[
1
γ(t)

(
−
√

4γ(t)α(t)−β2(t)

2 coth

[√
4γ(t)α(t)−β2(t)

2

(
ax + btα

α

)]
− β(t)

2

)
+

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

]−1

.

Also in these cases

s =
−b
2a2

+
3

2
γ1as

2 +
A

2C
γ1a,

A = −bs − a2s2 + γ1a
3s3, B = a2 − 3γ1a

3s, C = γ − γ2as.

If γ (t) = 0 and β (t) 6= 0

φ (ξ) =
−α (t) + β (t) eβ(t)ξ

β (t)
,
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u4 (x, t) = ± 1
6

e
is(ax + btα

Γ(α+1) )√−6C(−β+B)B(−Bβ2+4Bαγ+2A)

C(−β+B) +

γ e
is(ax + btα

Γ(α+1) )√−2βC
C

(
−α(t)+β(t)e

β(t)(ax + btα

Γ(α+1) )
β(t) +

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

)
−

(
1
6 e

is(ax + btα

Γ(α+1) ) 2Aβ+4Bαβγ+12Bβγ2h2−12Bβ2γh
γ
√
−2Cββ

+

2Bβ3−3B2β2+12B2βγh−12B2γ2h2

γ
√
−2Cββ

)
×

(
−α(t)+β(t)e

β(t)(ax + btα

Γ(α+1) )
β(t) +

1
6

√
β(−3β

3
2B+3

√
βB2−

√
3
√
−β+B

√
B
√
−Bβ2+4Bαγ+2A

Bγ(−β+B)

)−1

.

Also if we consider the Riccati equation in following form (case 2)

φ′ (x) = cos ξ − sin (ξ − φ (ξ)) y (ξ) ,

and by substituting this equation along with Eqs. (3.13)-(3.17) into equation (3.10)
we obtain new solutions for parameters a0, a1, a2 and h. Then by substituting these
parameters into Eq. (3.13) along with general solution for Riccati equation we have
new soliton solutions for perturbed nonlinear fractional Schrodinger equation with
the kerr law nonlinearity.

4. Conclusion

A solitary wave is a wave, which propagates without any temporal evolution in
shape or size when viewed in the reference frame moving with the group velocity of
the wave. The envelope of the wave has one global peak and decays far away from
the peak. Solitary waves arise in many contexts, including the elevation of the surface
of water and the intensity of light in optical fibers. A soliton is a nonlinear solitary
wave with the additional property that the wave retains its permanent structure,
even after interacting with another soliton. For example, two solitons propagating
in opposite directions effectively pass through each other without breaking. Solitons
form a special class of solutions of model equations, including the Korteweg de-Vries
(KdV) and the Nonlinear Schrodinger (NLS) equations. These model equations are
approximations, which hold under a restrictive set of conditions. The soliton solu-
tions obtained from the model equations provide important insight into the dynamics
of solitary waves. In this work, we obtain new solutions for perturbed nonlinear
fractional Schrodinger equation with the kerr law nonlinearity by using of several
important Riccati equations solutions and application of new conformable fractional
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derivative. This extension of tanh method is new, reliable, efficient and gives new
solutions.
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