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Abstract In this paper, an efficient method for solving optimal control problems of the linear differential
systems with inequality constraint is proposed. By using new adjustment of hat basis functions
and their operational matrices of integration, optimal control problem is reduced to an optimiza-
tion problem. Also, the error analysis of the proposed method is investigated and it is proved
that the order of convergence is O(h4). Finally, numerical examples affirm the efficiency of the
proposed method.
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1. INTRODUCTION

Finding analytic solution for optimal control problems with inequality constraints is dif-
ficult so numerical methods to get approximate solutions are important. In deterministic
setting, there are many text books for analytic solutions of optimal control problems [1, 2, 5,
6, 16, 27, 28, 29]. Furthermore, numerical schemes for these problems have been provided
in some articles [4, 8, 12, 13, 14, 15, 19, 22, 33].

Orthogonal functions, often used to solve various problems of dynamic systems. The aim of
this technique is reducing these problems to a set of algebraic equations. Typical examples
are the block-pulse functions [10], Legendre polynomials [3], Laguerre polynomials [11],
Chebyshev polynomials [9] and Fourier series [30].

There are different basic functions for the solution of optimal control problems successfully
solve the unconstrained problem such as block-pulse functions [10]. But often results in
analytical and computational for solving the optimal control problems with inequality con-
straints are difficulties. In recent years, the development of computational techniques for
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solving problems such as hybrid of block-pulse functions and Legendre polynomials [20, 31],
triangular orthogonal functions [7], B-spline functions [32].

The aim of this paper is developing a numerical scheme based on the adjustment of hat
basis functions to solve the optimal control problem of the linear differential systems with
inequality constraints. Operational matrices of the adjustment of hat basis functions reduce
such problems to those that solve a system of algebraic equations which greatly simplify the
problem. Consider the linear differential system

Ẋ(t) = K(t)X(t) + F (t)U(t), (1.1)

X(0) = Y, (1.2)

with inequality constraints as

G(t)X(t) +H(t)U(t) ≤ L(t), (1.3)

where X(t), U(t) are unknown functions and L(t) is a known function. Also K(t), F (t), G(t)
and H(t) are matrices of appropriate dimensions.
The aim of this paper is finding the numerical approximation of optimal control U∗(t) and the
corresponding optimal state X∗(t), 0 ≤ t ≤ T , satisfying Eqs. (1.1)-(1.3) while minimizing
the quadratic cost functional

J =

∫ T

0

[
XT (t)Q(t)X(t) + UT (t)R(t)U(t)

]
dt, (1.4)

where Q(t) and R(t) are positive semi-definite and positive definite matrices, respectively.

Definitions of adjustment of hat basis functions and their properties are given in Section
2. In Section 3, the adjustment of hat functions are developed to approximate the solution
of optimal control problem governed by linear differential systems. In Section 4, the error
analysis is proved. In Section 5, the proposed method is used for solving some numerical
examples. Finally, Section 6 affords some brief conclusion.

2. DEFINITIONS OF ADJUSTMENT OF HAT BASIS FUNCTIONS AND THEIR PROPERTIES

A set of adjustment of hat functions are defined on [0, T ] as [24]

ϕ0(t) =


−1
6h3 (t− h)(t− 2h)(t− 3h) 0 ≤ t ≤ 3h,

0 otherwise,
(2.1)

if i = 3k − 2 and 1 ≤ k ≤ n
3

ϕi(t) =


1

2h3 (t− (i− 1)h)(t− (i+ 1)h)(t− (i+ 2)h) (i− 1)h ≤ t ≤ (i+ 2)h,

0 otherwise,
(2.2)
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if i = 3k − 4 and 2 ≤ k ≤ n
3 + 1

ϕi(t) =


−1
2h3 (t− (i− 2)h)(t− (i− 1)h)(t− (i+ 1)h) (i− 2)h ≤ t ≤ (i+ 1)h,

0 otherwise,
(2.3)

if i = 3k and 1 ≤ k ≤ n
3 − 1

ϕi(t) =



1
6h3 (t− (i− 3)h)(t− (i− 2)h)(t− (i− 1)h) (i− 3)h ≤ t ≤ ih,

−1
6h3 (t− (i+ 1)h)(t− (i+ 2)h)(t− (i+ 3)h) ih ≤ t ≤ (i+ 3)h,

0 otherwise,

(2.4)

and

ϕn(t) =


1

6h3 (t− (T − h))(t− (T − 2h))(t− (T − 3h)) (T − 3h) ≤ t ≤ T,

0 otherwise,
(2.5)

where h = T
n is a sampling period and n ≥ 3 is an integer of multiple three.

Let us divide interval [0, T ] into n
3 subintervals [ih, (i + 3)h] where i = 0, 3, ..., n − 3, of

equal lengths 3h. By using the definition of adjustment of hat functions, we have

ϕi(kh) =


1 i = k,

0 i ̸= k,

(2.6)

and
n∑

i=0

ϕi(t) = 1.

An arbitrary real function f(t) on [0, T ] can be expanded in an adjustment of hat series as
follows

f(t) ≃
n∑

i=0

fiϕi(t) = FTΦ(t) = ΦT (t)F, (2.7)

where

F = [f0, f1, ..., fn]
T ,
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and

Φ(t) = [ϕ0(t), ϕ1(t), ..., ϕn(t)]
T , (2.8)

with

fi = f(ih), i = 0, 1, ..., n. (2.9)

Also, expand
∫ t

0
ϕi(s)ds by relation (2.7) in terms of the adjustment of hat basis functions as∫ t

0

ϕi(s)ds ≃
n∑

j=0

ai,jϕj(t), i = 0, 1, ...n. (2.10)

By using relation (2.9), we can compute the coefficients ai,j as follows

ai,j =

∫ jh

0

ϕi(s)ds, i, j = 0, 1, ..., n. (2.11)

Now, P is the (n + 1) × (n + 1) coefficients matrix with entries ai,j , i, j = 0, 1, ..., n, we
obtain

P =
h

24



0 9 8 9 9 . . . 9
0 p1 p2 p3 p3 . . . p3
0 0 p1 p2 p3 . . . p3
0 0 0 p1 p2 . . . p3
0 0 0 0 p1 . . . p3
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . p1


(n+1)×(n+1)

,

where

p1 =

 19 32 27
−5 8 27
1 0 9


3×3

, p2 =

 27 27 27
27 27 27
18 17 18


3×3

, p3 =

 27 27 27
27 27 27
18 18 18


3×3

,

and 0 based on its location in the matrix, is the 3× 3 zero matrix or 3-vector.

From relations (2.8) and (2.10), we obtain∫ t

0

Φ(s)ds ≃ PΦ(t). (2.12)
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Also, we have

Φi(t)Φj(t) =


0 i = 3k, 0 ≤ k ≤ n

3 and |i− j| ≥ 4,

0 otherwise and |i− j| ≥ 3.

(2.13)

Now, from relations (2.8) and (2.13) we have

Φ(t)ΦT (t) = Λ, (2.14)

where matrix Λ is shown in page 236.

Therefore, from (2.14) we have∫ T

0

Φ(s)ΦT (s)ds = Z, (2.15)

where

Z =
h

560



128 99 −36 19 0 0 0 0 · · · 0

99 648 −81 −36 0 0 0 0 · · · 0

−36 −81 648 99 0 0 0 0 · · · 0

19 −36 99 256 99 −36 19 0 · · · 0

0 0 0 99 648 −81 −36 0 · · · 0

. . . . . . . . . . . . . . .

0 · · · 0 19 −36 99 256 99 −36 19

0 · · · 0 0 0 0 99 648 −81 −36

0 · · · 0 0 0 0 −36 −81 648 99

0 · · · 0 0 0 0 19 −36 99 128


(n+1)×(n+1)

.

(2.16)

Furthermore, by considering (2.6) and expanding entries Φ(t)ΦT (t) defined in (2.14) by the
adjustment of hat functions, we obtain
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Φ(t)ΦT (t) =


ϕ0(t) 0 · · · 0
0 ϕ1(t) · · · 0
...

...
. . .

...
0 0 · · · ϕn(t)


(n+1)×(n+1)

. (2.17)

Definition 2.1. For two constant vectors aT = [a0, a1, . . . , an] and bT = [b0, b1, . . . , bn], we
define

aT ⊙ bT = [a0b0, a1b1, . . . , anbn],

where ⊙ denotes the inner product.
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Theorem 2.1. Let us approximate each of the functions of a(t) and b(t) by the adjustment of
hat basis functions. That is,

a(t) ≃ ATΦ(t) = ΦT (t)A,

b(t) ≃ BTΦ(t) = ΦT (t)B.

Then we have

a(t)b(t) ≃ (AT ⊙BT )Φ(t).

Proof. From (2.17), we have

a(t)b(t) ≃ ATΦ(t)ΦT (t)B ≃ AT


ϕ0(t) 0 · · · 0
0 ϕ1(t) · · · 0
...

...
. . .

...
0 0 · · · ϕn(t)

B

= [a0ϕ0(t), a1ϕ1(t), ..., anϕn(t)]B = ΦT (t)


a0 0 · · · 0
0 a1 · · · 0
...

...
. . .

...
0 0 · · · an

B

= a0b0ϕ0(t) + a1b1ϕ1(t) + ...+ anbnϕn(t) = [a0b0, a1b1, ..., anbn]Φ(t) = (AT ⊙BT )Φ(t).

Hence, this completes the proof. �

3. BASIC IDEA

Firstly, we can rewrite relations (1.1) and (1.2) as

X(t) = Y +

∫ t

0

K(s)X(s)ds+

∫ t

0

F (s)U(s)ds. (3.1)

Then, consider the ith equation of relation (3.1)

xi(t) = yi +

∫ t

0

 n∑
j=0

kij(s)xj(s) +
n∑

j=0

fij(s)uj(s)

 ds, (3.2)

with ith inequality constraint of (1.3), we have
n∑

j=0

gij(t)xj(t) +
n∑

j=0

hij(t)uj(t) ≤ li(t). (3.3)

Now, we approximate functions xi, ui, yi, li, gij , hij , kij and fij by the adjustment of hat
functions as follows
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xi(t) ≃ ΦT (t)Xi = XT
i Φ(t),

ui(t) ≃ ΦT (t)Ui = UT
i Φ(t),

yi(t) ≃ ΦT (t)Yi = Y T
i Φ(t),

li(t) ≃ ΦT (t)Li = LT
i Φ(t),

(3.4)



gij(t) ≃ ΦT (t)Gij = GT
ijΦ(t),

hij(t) ≃ ΦT (t)Hij = HT
ijΦ(t),

kij(t) ≃ ΦT (t)Kij = KT
ijΦ(t),

fij(t) ≃ ΦT (t)Fij = FT
ijΦ(t),

(3.5)

where matrices Gij , Hij ,Kij and Fij and vectors Xi, Ui, Yi and Li are the adjustment of hat
functions coefficients of gij , hij , kij , fij , xi, ui, yi and li, respectively.

Substituting (3.4) and (3.5) into (3.2) and (3.3), and using Theorem (1) we have

XT
i Φ(t) ≃ Y T

i Φ(t) +

n∑
j=0

(KT
ij ⊙XT

j )

∫ t

0

Φ(s)ds+

n∑
j=0

(FT
ij ⊙ UT

j )

∫ t

0

Φ(s)ds,

subject to

n∑
j=0

(GT
ij ⊙XT

j )Φ(t) +
n∑

j=0

(HT
ij ⊙ UT

j )Φ(t) ≤ LT
i Φ(t).

By using (2.12) and replacing ≃ with = and eliminating Φ(t), we get

XT
i = Y T

i +

n∑
j=0

(KT
ij ⊙XT

j )P +

n∑
j=0

(FT
ij ⊙ UT

j )P, i = 0, 1, . . . , n, (3.6)

subject to
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n∑
j=0

(GT
ij ⊙XT

j ) +

n∑
j=0

(HT
ij ⊙ UT

j ) ≤ LT
i . (3.7)

The system of linear equations (3.6) and (3.7), can be expressed in the following matrices
form

X̃T − V −W = Ỹ T , (3.8)

subject to

Ã+ B̃ ≤ L̃T , (3.9)

where

V T =



∑n
j=0(K

T
0j ⊙XT

j )P∑n
j=0(K

T
1j ⊙XT

j )P

...∑n
j=0(K

T
nj ⊙XT

j )P


, WT =



∑n
j=0(F

T
0j ⊙ UT

j )P∑n
j=0(F

T
1j ⊙ UT

j )P

...∑n
j=0(F

T
nj ⊙ UT

j )P


,

and

ÃT =



∑n
j=0(G

T
0j ⊙XT

j )∑n
j=0(G

T
1j ⊙XT

j )

...∑n
j=0(G

T
nj ⊙XT

j )


, B̃T =



∑n
j=0(H

T
0j ⊙ UT

j )∑n
j=0(H

T
1j ⊙ UT

j )

...∑n
j=0(H

T
nj ⊙ UT

j )


,

and 

X̃ = [X0, X1, . . . , Xn]
T ,

Ỹ = [Y0, Y1, . . . , Yn]
T ,

L̃ = [L0, L1, . . . , Ln]
T ,
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where X̃, Ỹ and L̃ are (n+ 1)2 dimensional vectors and

Xi = [Xi0, Xi1, . . . , Xin]
T ,

Ui = [Ui0, Ui1, . . . , Uin]
T ,

Kij = [K0
ij ,K

1
ij , . . . ,K

n
ij ]

T ,

Fij = [F 0
ij , F

1
ij , . . . , F

n
ij ]

T ,



Yi = [Yi0, Yi1, . . . , Yin]
T ,

Li = [Li0, Li1, . . . , Lin]
T

Gij = [G0
ij , G

1
ij , . . . , G

n
ij ]

T ,

Hij = [H0
ij ,H

1
ij , . . . , H

n
ij ]

T .

By this method, system of Eq. (3.1) is reduced to system of (n+ 1)2 algebraic equations.

Now, we have

J =

∫ T

0

n∑
i=0

 n∑
j=0

xi(t)qij(t)xj(t)

 dt+

∫ T

0

n∑
i=0

 n∑
j=0

ui(t)rij(t)uj(t)

 dt.

(3.10)

Let us approximate qij and rij by the adjustment of hat functions as follows


qij(t) ≃ ΦT (t)Qij = QT

ijΦ(t),

rij(t) ≃ ΦT (t)Rij = RT
ijΦ(t),

(3.11)

where matrices Qij and Rij are the adjustment of hat functions coefficient matrices of qij
and rij , respectively.

Substituting (3.11) into (3.10), and using Theorem (1), we will have
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J ≃
n∑

i=0

 n∑
j=0

(XT
i ⊙QT

ij)(

∫ T

0

Φ(t)ΦT (t)dt)Xj



+
n∑

i=0

 n∑
j=0

(UT
i ⊙RT

ij)(

∫ T

0

Φ(t)ΦT (t)dt)Uj

 .

By using (2.15) and replacing ≃ with = and eliminating Φ(t), we have

J =
n∑

i=0

 n∑
j=0

(XT
i ⊙QT

ij)ZXj

+
n∑

i=0

 n∑
j=0

(UT
i ⊙RT

ij)ZUj

 . (3.12)

Now, we find X and U such that J(X,U) in (3.12) is minimized subject to the constraints in
(3.8) and (3.9). In this paper, the method used to solve the nonlinear constrained optimization
problem is based on sequential quadratic programming (SQP) algorithm. SQP is an iterative
method for nonlinear optimization. The idea of the SQP methods is to solving the nonlinearly
constrained problem using a sequence of quadratic programming subproblems. Also, the
approximated solution in each iteration need not be feasible points, since the computation of
feasible points in case of the nonlinear constraints may be as difficult as the solution of the
nonlinear programming itself [18].

4. ERROR ANALYSIS OF THE PROPOSED METHOD

In this section, we investigate that the rate of convergence of the mentioned approach is
O(h4). We define

∥x(t)∥ = sup
t∈[0,T ]

|x(t)|. (4.1)

Theorem 4.1. Assume that X(t) = [X0, X1, . . . , Xn] ∈ (C4[0, T ])n+1 and

Xm(t) = [Xm0(t), Xm1(t), . . . , Xmn(t)] =

[
∑n

i=0 X0(ih)ϕi(t),
∑n

i=0 X1(ih)ϕi(t), . . . ,
∑n

i=0 Xn(ih)ϕi(t)] ,

be the adjustment of hat functions expansion of X(t).

Then we have 
(i) ∀j ∥Xj(t)−Xmj(t)∥ = O(h4),

(ii) ∀j ∥
∫ t

o
(Xj(s)−Xmj(s))ds∥ = O(h4).
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Proof. (i) Let

Ek(t) =

 Xj(t)−Xmj(t) t ∈ Ik,

0 t ∈ [0, T ]− Ik,

where Ik = {t|kh ≤ t ≤ (k + 3)h}, k = 0, 3, ..., n− 3. Then, we obtain

Ek(t) = Xj(t)−
n∑

i=0

Xj(ih)ϕi(t) = Xj(t)− (Xj(kh)ϕk(t)

+Xj((k + 1)h)ϕk+1(t) +Xj((k + 2)h)ϕk+2(t) +Xj((k + 3)h)ϕk+3(t)).

By using third degree interpolation error, we obtain [25]

Ek(t) =
(t− kh)(t− (k + 1)h)(t− (k + 2)h)(t− (k + 3)h)

24
.
d4Xj(ηk)

dt4
,

where ηk ∈ (kh, (k + 3)h).

Now consider u(t) = (t− kh)(t− (k + 1)h)(t− (k + 2)h)(t− (k + 3)h). Since, u(t) is a
continuous function and Ik is compacted, so supt∈Ik

|u(t)| = maxt∈Ik |u(t)| = 2.798h4.

Also, we have

|Ek(t)| ≤
1

24
|u(t)||d

4Xj(ηk)

dt4
|.

Hence, we have

∥E(t)∥ = ∥Xj(t)−Xmj(t)∥ = max
k=0,3,...,n−3

sup
t∈Ik

|Ek(t)| ≤ max
k=0,3,...,n−3

0.0867h4|d
4Xj(ηk)

dt4
|.

Then, there is a l ∈ {0, 3, ..., n− 3}, where

∥E(t)∥ ≤ max
k=0,3,...,n−3

0.0867h4|d
4Xj(ηk)

dt4
| = 0.0867h4|d

4Xj(ηl)

dt4
|.

Finally, by using relation (4.1), we have

∥E(t)∥ ≤ 0.0867h4|d
4Xj(ηl)

dt4
| ≤ 0.0867h4∥d

4Xj(t)

dt4
∥. (4.2)

According to relation (4.2), we obtain

∥E(t)∥ = O(h4).

(ii) From case (i), we have

∥
∫ t

o

(Xj(s)−Xmj(s))ds∥ ≤
∫ t

o

∥(Xj(s)−Xmj(s))∥ds
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≤ 0.0867h4∥d
4Xj(t)

dt4
∥
∫ t

0

ds = 0.0867h4t∥d
4Xj(t)

dt4
∥,

since t ∈ [kh, (k + 3)h] ≤ T , then we have

∥
∫ t

o

(Xj(s)−Xmj(s))ds∥ ≤ 0.0867Th4∥d
4Xj(t)

dt4
∥. (4.3)

According to relation (4.3), we obtain

∥
∫ t

o

(Xj(s)−Xmj(s))ds∥ = O(h4).

Hence, this completes the proof. �

5. NUMERICAL EXAMPLES

In this section, we demonstrate the efficiency and accuracy of the proposed method by three
examples and obtain the results for n = 15, 63. All computations were carried out using a
program written in Matlab.

Example 5.1. Consider the minimization of functional [16]

J =
1

2

∫ 1

0

(
XT (t)

(
1 0
0 0

)
X(t) + U2(t)

)
dt,

subject to 

Ẋ(t) =

(
0 1

0 −1

)
X(t) +

(
0

1

)
U(t),

|U(t)| ≤ 1,

X(0) =

(
0

10

)
.

where the optimal control of cost functional is J = 8.07054. A comparison between the cost
functional obtained by the proposed method via the Rationalized Haar functions method [26]
and Hybrid of block-pulse and Legendre method [20] is shown in Table 1.

Example 5.2. Consider the minimization of functional [17]

J =

∫ 1

0

(
XT (t)

(
1 0
0 0

)
X(t) + 0.005U2(t)

)
dt,
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subject to



Ẋ(t) =

(
0 1

0 −1

)
X(t) +

(
0

1

)
U(t),

X2(t) ≤ 8(t− 0.5)2 − 0.5,

X(0) =

(
0

−1

)
.

A comparison between the cost functional obtained by the proposed method via the Ratio-
nalized Haar method [21] and Hybrid of block-pulse and Legendre method [20] is shown
in Table 2. The computational results for X2(t) for n = 15 and n = 63 together with
r(t) = 8(t− 0.5)2 − 0.5 are given in Figures 1 and 2.

Table 1. Estimated values and absolute errors of J for Example 5.1.

Methods Estimated value Absolute error CPU time
Rationalized Haar functions [26]

k=4 8.07473 4.19e− 04 0.389
k=8 8.07065 1.10e− 04 0.546

Hybrid of block-pulse and
Legendre polynomials [20]

k=4, m1=3 8.07059 4.99e− 05 1.592
k=4, m1=4 8.07056 2.00e− 05 4.304

Present method
n=15 8.07243 1.89e− 04 0.253
n=63 8.07055 1.00e− 05 0.612

Example 5.3. Consider the minimization of functional [23]

J =

∫ 1

0

U2(t)dt,
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subject to 

Ẋ(t) =

(
0 1

0 0

)
X(t) +

(
0

1

)
U(t),

X1(t) ≤ 0.15,

X(0) =

(
0

1

)
, X(1) =

(
0

−1

)
.

A comparison between the cost functional obtained by the proposed method via the Gradient-
restoration method [23] is shown in Table 3.

Table 2. Estimated values of J for Example 5.2.
Methods Estimated value CPU time

Rationalized Haar functions [21]
k=16, w=100 0.171973 -
k=32,w=100 0.170185 -
k=64, w=100 0.170115 -
k=128,w=100 0.170103 -

Hybrid of block-pulse and
Legendre polynomials [20]

k=4, m1=3 0.17013645 0.951
k=4, m1=4 0.17013640 1.545

Present method
n=15 0.1700143 0.192
n=63 0.1698312 0.524
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Figure 1. r(t) and X2(t) obtained for n = 15 of Example 5.2.
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Table 3. Estimated values of J for Example 5.3.

Methods Estimated value CPU time
Gradient-restoration [23]

N=16 5.927 -
Present method

n=15 5.8451 1.025
n=63 5.7346 1.923

6. CONCLUSION

In the present work, the excellent properties of operational matrices of the adjustment of
hat functions used to solve optimal control problem subject to linear differential systems with
inequality constraint. The matrices P and Z in Eqs. (2.12) and (2.15) have large numbers of
zero elements, hence the this method is very attractive and reduces the CPU time. Moreover,
it is proved that method is convergent and the order of convergence of this method is O(h4).
Illustrative examples are given to demonstrate the validity and applicability of the proposed
method.
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Figure 2. r(t) and X2(t) obtained for n = 63 of Example 5.2.
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